5.3.45 Problems 4401 to 4500

Table 5.373: Second order ode

#

ODE

Mathematica

Maple

13978

\[ {}y y^{\prime \prime } = 1 \]

13980

\[ {}y^{\prime \prime }+4 y^{\prime }+y = 0 \]

13982

\[ {}2 y^{\prime \prime }-3 y^{\prime }-2 y = 0 \]

13984

\[ {}\left (x -3\right ) y^{\prime \prime }+y \ln \left (x \right ) = x^{2} \]

13985

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cot \left (x \right ) = 0 \]

13986

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y = 0 \]

13987

\[ {}x y^{\prime \prime }+2 x^{2} y^{\prime }+y \sin \left (x \right ) = \sinh \left (x \right ) \]

13988

\[ {}\sin \left (x \right ) y^{\prime \prime }+x y^{\prime }+7 y = 1 \]

13989

\[ {}y^{\prime \prime }-\left (x -1\right ) y^{\prime }+x^{2} y = \tan \left (x \right ) \]

13990

\[ {}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

13991

\[ {}x^{2} y^{\prime \prime }-4 x^{2} y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

13992

\[ {}y^{\prime \prime }+\frac {k x}{y^{4}} = 0 \]

13993

\[ {}y^{\prime \prime }+2 x y^{\prime }+2 y = 0 \]

13994

\[ {}x y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

13995

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+4 x y = 2 x \]

13996

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 1-2 x \]

13997

\[ {}y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 0 \]

13998

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+2 \left (1-x \right ) y = 0 \]

13999

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 2 x \]

14000

\[ {}\ln \left (x^{2}+1\right ) y^{\prime \prime }+\frac {4 x y^{\prime }}{x^{2}+1}+\frac {\left (-x^{2}+1\right ) y}{\left (x^{2}+1\right )^{2}} = 0 \]

14001

\[ {}x y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 0 \]

14002

\[ {}y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = \cos \left (x \right ) \]

14003

\[ {}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }-\csc \left (x \right )^{2} y = \cos \left (x \right ) \]

14004

\[ {}x \ln \left (x \right ) y^{\prime \prime }+2 y^{\prime }-\frac {y}{x} = 1 \]

14005

\[ {}x y^{\prime \prime }+\left (6 x y^{2}+1\right ) y^{\prime }+2 y^{3}+1 = 0 \]

14006

\[ {}\frac {x y^{\prime \prime }}{1+y}+\frac {y y^{\prime }-x {y^{\prime }}^{2}+y^{\prime }}{\left (1+y\right )^{2}} = x \sin \left (x \right ) \]

14007

\[ {}\left (x \cos \left (y\right )+\sin \left (x \right )\right ) y^{\prime \prime }-x {y^{\prime }}^{2} \sin \left (y\right )+2 \left (\cos \left (y\right )+\cos \left (x \right )\right ) y^{\prime } = y \sin \left (x \right ) \]

14008

\[ {}y y^{\prime \prime } \sin \left (x \right )+\left (\sin \left (x \right ) y^{\prime }+y \cos \left (x \right )\right ) y^{\prime } = \cos \left (x \right ) \]

14009

\[ {}\left (1-y\right ) y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

14010

\[ {}\left (\cos \left (y\right )-y \sin \left (y\right )\right ) y^{\prime \prime }-{y^{\prime }}^{2} \left (2 \sin \left (y\right )+y \cos \left (y\right )\right ) = \sin \left (x \right ) \]

14011

\[ {}y^{\prime \prime }+\frac {2 x y^{\prime }}{2 x -1}-\frac {4 x y}{\left (2 x -1\right )^{2}} = 0 \]

14012

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }+\left (x^{2}+x +10\right ) y^{\prime } = \left (25-6 x \right ) y \]

14013

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{1+x}-\frac {\left (x +2\right ) y}{x^{2} \left (1+x \right )} = 0 \]

14014

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x^{2}+4 x -3\right ) y^{\prime }+8 x y = 0 \]

14015

\[ {}\frac {\left (x^{2}-x \right ) y^{\prime \prime }}{x}+\frac {\left (1+3 x \right ) y^{\prime }}{x}+\frac {y}{x} = 3 x \]

14016

\[ {}\left (2 \sin \left (x \right )-\cos \left (x \right )\right ) y^{\prime \prime }+\left (7 \sin \left (x \right )+4 \cos \left (x \right )\right ) y^{\prime }+10 y \cos \left (x \right ) = 0 \]

14017

\[ {}y^{\prime \prime }+\frac {\left (x -1\right ) y^{\prime }}{x}+\frac {y}{x^{3}} = \frac {{\mathrm e}^{-\frac {1}{x}}}{x^{3}} \]

14018

\[ {}y^{\prime \prime }+\left (2 x +5\right ) y^{\prime }+\left (4 x +8\right ) y = {\mathrm e}^{-2 x} \]

14019

\[ {}y^{\prime \prime }+9 y = 0 \]

14020

\[ {}4 y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]

14021

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

14022

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]

14023

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]

14024

\[ {}4 y^{\prime \prime }-4 y^{\prime }+37 y = 0 \]

14025

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

14026

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

14027

\[ {}4 y^{\prime \prime }-12 y^{\prime }+13 y = 0 \]

14028

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 0 \]

14029

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

14031

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

14032

\[ {}y^{\prime \prime }-20 y^{\prime }+51 y = 0 \]

14033

\[ {}2 y^{\prime \prime }+3 y^{\prime }+y = 0 \]

14034

\[ {}3 y^{\prime \prime }+8 y^{\prime }-3 y = 0 \]

14035

\[ {}2 y^{\prime \prime }+20 y^{\prime }+51 y = 0 \]

14036

\[ {}4 y^{\prime \prime }+40 y^{\prime }+101 y = 0 \]

14037

\[ {}y^{\prime \prime }+6 y^{\prime }+34 y = 0 \]

14045

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 9 t \]

14046

\[ {}4 y^{\prime \prime }+16 y^{\prime }+17 y = 17 t -1 \]

14047

\[ {}4 y^{\prime \prime }+5 y^{\prime }+4 y = 3 \,{\mathrm e}^{-t} \]

14048

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t^{2} {\mathrm e}^{2 t} \]

14049

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{-2 t} \]

14050

\[ {}2 y^{\prime \prime }-3 y^{\prime }+17 y = 17 t -1 \]

14051

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t} \]

14052

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 2+t \]

14054

\[ {}y^{\prime \prime }+8 y^{\prime }+20 y = \sin \left (2 t \right ) \]

14055

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = t^{2} \]

14056

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 4 \sin \left (t \right ) \]

14058

\[ {}3 y^{\prime \prime }+5 y^{\prime }-2 y = 7 \,{\mathrm e}^{-2 t} \]

14061

\[ {}y^{\prime \prime }+9 y = 24 \sin \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )+\operatorname {Heaviside}\left (t -\pi \right )\right ) \]

14062

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right ) \]

14063

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 5 \cos \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )\right ) \]

14064

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 36 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right )\right ) \]

14065

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 39 \operatorname {Heaviside}\left (t \right )-507 \left (t -2\right ) \operatorname {Heaviside}\left (t -2\right ) \]

14066

\[ {}y^{\prime \prime }+4 y = 3 \operatorname {Heaviside}\left (t \right )-3 \operatorname {Heaviside}\left (t -4\right )+\left (2 t -5\right ) \operatorname {Heaviside}\left (t -4\right ) \]

14067

\[ {}4 y^{\prime \prime }+4 y^{\prime }+5 y = 25 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )\right ) \]

14068

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right )+\operatorname {Heaviside}\left (t -2\right )-\operatorname {Heaviside}\left (t -3\right ) \]

14069

\[ {}y^{\prime \prime }-2 y^{\prime } = \left \{\begin {array}{cc} 4 & 0\le t <1 \\ 6 & 1\le t \end {array}\right . \]

14070

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \left \{\begin {array}{cc} 0 & 0\le t <1 \\ 1 & 1\le t <2 \\ -1 & 2\le t \end {array}\right . \]

14071

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t <2 \\ -1 & 2\le t \end {array}\right . \]

14072

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t <\pi \\ -t & \pi \le t \end {array}\right . \]

14073

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 8 t & 0\le t <\frac {\pi }{2} \\ 8 \pi & \frac {\pi }{2}\le t \end {array}\right . \]

14074

\[ {}y^{\prime \prime }+4 \pi ^{2} y = 3 \delta \left (t -\frac {1}{3}\right )-\delta \left (t -1\right ) \]

14075

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 3 \delta \left (t -1\right ) \]

14076

\[ {}y^{\prime \prime }+4 y^{\prime }+29 y = 5 \delta \left (t -\pi \right )-5 \delta \left (t -2 \pi \right ) \]

14077

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 1-\delta \left (t -1\right ) \]

14078

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \delta \left (t -1\right ) \]

14079

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = \delta \left (t -1\right ) \]

14087

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = t^{7} \]

14088

\[ {}t^{2} y^{\prime \prime }-6 t y^{\prime }+\sin \left (2 t \right ) y = \ln \left (t \right ) \]

14089

\[ {}y^{\prime \prime }+3 y^{\prime }+\frac {y}{t} = t \]

14090

\[ {}y^{\prime \prime }+t y^{\prime }-y \ln \left (t \right ) = \cos \left (2 t \right ) \]

14091

\[ {}t^{3} y^{\prime \prime }-2 t y^{\prime }+y = t^{4} \]

14092

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 1 \]

14093

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{t} \]

14094

\[ {}y^{\prime \prime }-3 y^{\prime }-7 y = 4 \]

14096

\[ {}3 y^{\prime \prime }+5 y^{\prime }-2 y = 3 t^{2} \]

14130

\[ {}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

14131

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

14132

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{{3}/{2}} {\mathrm e}^{x} \]

14133

\[ {}y^{\prime \prime }+4 y = 2 \sec \left (2 x \right ) \]