5.4.33 Problems 3201 to 3300

Table 5.479: Second ODE homogeneous ODE

#

ODE

Mathematica

Maple

16212

\[ {}8 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

16213

\[ {}4 y^{\prime \prime }+9 y = 0 \]

16214

\[ {}y^{\prime \prime }+16 y = 0 \]

16215

\[ {}y^{\prime \prime }+8 y = 0 \]

16216

\[ {}y^{\prime \prime }+7 y = 0 \]

16217

\[ {}4 y^{\prime \prime }+21 y^{\prime }+5 y = 0 \]

16218

\[ {}7 y^{\prime \prime }+4 y^{\prime }-3 y = 0 \]

16219

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

16220

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

16221

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]

16222

\[ {}3 y^{\prime \prime }-y^{\prime } = 0 \]

16223

\[ {}y^{\prime \prime }+y^{\prime }-12 y = 0 \]

16224

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 0 \]

16225

\[ {}2 y^{\prime \prime }-7 y^{\prime }-4 y = 0 \]

16226

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

16227

\[ {}y^{\prime \prime }+36 y = 0 \]

16228

\[ {}y^{\prime \prime }+100 y = 0 \]

16229

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

16230

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

16231

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

16232

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 0 \]

16233

\[ {}y^{\prime \prime }+y^{\prime }-y = 0 \]

16234

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

16235

\[ {}y^{\prime \prime }-y^{\prime }+y = 0 \]

16236

\[ {}y^{\prime \prime }-y^{\prime }-y = 0 \]

16237

\[ {}6 y^{\prime \prime }+5 y^{\prime }+y = 0 \]

16238

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

16239

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 0 \]

16240

\[ {}3 t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

16241

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

16242

\[ {}a y^{\prime \prime }+2 b y^{\prime }+c y = 0 \]

16243

\[ {}y^{\prime \prime }+6 y^{\prime }+2 y = 0 \]

16244

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

16245

\[ {}y^{\prime \prime }-6 y^{\prime }-16 y = 0 \]

16246

\[ {}y^{\prime \prime }-16 y = 0 \]

16247

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

16248

\[ {}{y^{\prime \prime }}^{2}-5 y^{\prime \prime } y^{\prime }+4 y^{2} = 0 \]

16249

\[ {}{y^{\prime \prime }}^{2}-2 y^{\prime \prime } y^{\prime }+y^{2} = 0 \]

16250

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 0 \]

16359

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = 0 \]

16361

\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = 0 \]

16363

\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 0 \]

16405

\[ {}2 y y^{\prime \prime }+y^{2} = {y^{\prime }}^{2} \]

16440

\[ {}4 x^{2} y^{\prime \prime }-8 x y^{\prime }+5 y = 0 \]

16441

\[ {}3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \]

16442

\[ {}2 x^{2} y^{\prime \prime }-8 x y^{\prime }+8 y = 0 \]

16443

\[ {}2 x^{2} y^{\prime \prime }-7 x y^{\prime }+7 y = 0 \]

16444

\[ {}4 x^{2} y^{\prime \prime }+17 y = 0 \]

16445

\[ {}9 x^{2} y^{\prime \prime }-9 x y^{\prime }+10 y = 0 \]

16446

\[ {}2 x^{2} y^{\prime \prime }-2 x y^{\prime }+20 y = 0 \]

16447

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+10 y = 0 \]

16448

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+y = 0 \]

16449

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

16450

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

16451

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0 \]

16470

\[ {}3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \]

16471

\[ {}2 x^{2} y^{\prime \prime }-7 x y^{\prime }+7 y = 0 \]

16472

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

16473

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

16482

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

16483

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

16484

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

16489

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

16491

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

16493

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

16494

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (4 x^{2}-4\right ) y = 0 \]

16495

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

16496

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

16498

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

16499

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

16506

\[ {}6 x^{2} y^{\prime \prime }+5 x y^{\prime }-y = 0 \]

16558

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

16559

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

16560

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

16561

\[ {}\left (t +1\right )^{2} y^{\prime \prime }-2 \left (t +1\right ) y^{\prime }+2 y = 0 \]

16562

\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = 0 \]

16563

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

16564

\[ {}6 y^{\prime \prime }+5 y^{\prime }-4 y = 0 \]

16565

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

16566

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

16567

\[ {}y^{\prime \prime }-10 y^{\prime }+34 y = 0 \]

16568

\[ {}2 y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

16569

\[ {}15 y^{\prime \prime }-11 y^{\prime }+2 y = 0 \]

16570

\[ {}20 y^{\prime \prime }+y^{\prime }-y = 0 \]

16571

\[ {}12 y^{\prime \prime }+8 y^{\prime }+y = 0 \]

16589

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

16590

\[ {}y^{\prime \prime }+10 y^{\prime }+16 y = 0 \]

16591

\[ {}y^{\prime \prime }+16 y = 0 \]

16592

\[ {}y^{\prime \prime }+25 y = 0 \]

16603

\[ {}y^{\prime \prime }-2 t y^{\prime }+t^{2} y = 0 \]

16604

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

16605

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

16606

\[ {}t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0 \]

16607

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+8 y = 0 \]

16608

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

16609

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

16610

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

16611

\[ {}5 x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

16612

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+25 y = 0 \]

16623

\[ {}4 x^{\prime \prime }+9 x = 0 \]