5.4.32 Problems 3101 to 3200

Table 5.477: Second ODE homogeneous ODE

#

ODE

Mathematica

Maple

15384

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \]

15385

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

15386

\[ {}x^{2} y^{\prime \prime }-19 x y^{\prime }+100 y = 0 \]

15387

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+29 y = 0 \]

15388

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+10 y = 0 \]

15389

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+29 y = 0 \]

15390

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

15391

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

15392

\[ {}4 x^{2} y^{\prime \prime }+37 y = 0 \]

15393

\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 0 \]

15394

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-25 y = 0 \]

15395

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+5 y = 0 \]

15396

\[ {}3 x^{2} y^{\prime \prime }-7 x y^{\prime }+3 y = 0 \]

15397

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-10 y = 0 \]

15398

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }-y = 0 \]

15399

\[ {}x^{2} y^{\prime \prime }-11 x y^{\prime }+36 y = 0 \]

15400

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

15401

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

15402

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+13 y = 0 \]

15535

\[ {}y^{\prime \prime }+36 y = 0 \]

15536

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 0 \]

15537

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

15538

\[ {}y^{\prime \prime }-36 y = 0 \]

15539

\[ {}y^{\prime \prime }-9 y^{\prime }+14 y = 0 \]

15540

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+16 y = 0 \]

15543

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

15544

\[ {}y^{\prime \prime }+3 y = 0 \]

15545

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0 \]

15546

\[ {}x^{2} y^{\prime \prime }+\frac {5 y}{2} = 0 \]

15548

\[ {}x^{2} y^{\prime \prime }-6 y = 0 \]

15549

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

15550

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

15551

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 0 \]

15552

\[ {}y^{\prime \prime }-8 y^{\prime }+25 y = 0 \]

15553

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-30 y = 0 \]

15554

\[ {}y^{\prime \prime }+y^{\prime }-30 y = 0 \]

15555

\[ {}16 y^{\prime \prime }-8 y^{\prime }+y = 0 \]

15556

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+y = 0 \]

15558

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y = 0 \]

15559

\[ {}9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

15562

\[ {}y^{\prime \prime }+20 y^{\prime }+100 y = 0 \]

15563

\[ {}x y^{\prime \prime } = 3 y^{\prime } \]

15564

\[ {}y^{\prime \prime }-5 y^{\prime } = 0 \]

15576

\[ {}x y^{\prime \prime }-y^{\prime } = -3 x {y^{\prime }}^{3} \]

15598

\[ {}t y^{\prime \prime }+y^{\prime }+t y = 0 \]

15599

\[ {}y^{\prime \prime }-9 y = 0 \]

15602

\[ {}y^{\prime \prime }-8 y^{\prime }+17 y = 0 \]

15604

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]

15605

\[ {}y^{\prime \prime }+8 y^{\prime }+17 y = 0 \]

15785

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+2 y = 0 \]

15793

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

15794

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

15795

\[ {}x^{\prime \prime }+2 x^{\prime }-10 x = 0 \]

15797

\[ {}y^{\prime \prime }-12 y^{\prime }+40 y = 0 \]

15800

\[ {}x^{2} y^{\prime \prime }-12 x y^{\prime }+42 y = 0 \]

15801

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+5 y = 0 \]

15822

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

15823

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

15826

\[ {}t^{2} y^{\prime \prime }-12 t y^{\prime }+42 y = 0 \]

15827

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+5 y = 0 \]

15835

\[ {}16 y^{\prime \prime }+24 y^{\prime }+153 y = 0 \]

15844

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

15845

\[ {}y^{\prime \prime }-6 y^{\prime }+45 y = 0 \]

15846

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-16 y = 0 \]

15847

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+2 y = 0 \]

15858

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \]

16177

\[ {}y^{\prime \prime }-y = 0 \]

16178

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

16179

\[ {}2 t^{2} y^{\prime \prime }-3 t y^{\prime }-3 y = 0 \]

16180

\[ {}y^{\prime \prime }+9 y = 0 \]

16181

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

16182

\[ {}y^{\prime \prime }+9 y = 0 \]

16183

\[ {}3 t^{2} y^{\prime \prime }-5 t y^{\prime }-3 y = 0 \]

16184

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }-7 y = 0 \]

16186

\[ {}y^{\prime \prime }+10 y^{\prime }+24 y = 0 \]

16187

\[ {}y^{\prime \prime }+16 y = 0 \]

16188

\[ {}y^{\prime \prime }+6 y^{\prime }+18 y = 0 \]

16189

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }-y = 0 \]

16190

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

16191

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 0 \]

16192

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

16193

\[ {}y^{\prime \prime }+10 y^{\prime }+25 y = 0 \]

16194

\[ {}y^{\prime \prime }+9 y = 0 \]

16195

\[ {}y^{\prime \prime }+49 y = 0 \]

16196

\[ {}t^{2} y^{\prime \prime }+4 t y^{\prime }-4 y = 0 \]

16197

\[ {}t^{2} y^{\prime \prime }+6 t y^{\prime }+6 y = 0 \]

16198

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

16199

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

16200

\[ {}a y^{\prime \prime }+b y^{\prime }+c y = 0 \]

16201

\[ {}t^{2} y^{\prime \prime }+a t y^{\prime }+b y = 0 \]

16202

\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (36 t^{2}-1\right ) y = 0 \]

16203

\[ {}t y^{\prime \prime }+2 y^{\prime }+16 t y = 0 \]

16204

\[ {}y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y = 0 \]

16205

\[ {}y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y = 0 \]

16206

\[ {}y^{\prime \prime } = 0 \]

16207

\[ {}y^{\prime \prime }-4 y^{\prime }-12 y = 0 \]

16208

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

16209

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

16210

\[ {}y^{\prime \prime }+8 y^{\prime }+12 y = 0 \]

16211

\[ {}y^{\prime \prime }+5 y^{\prime }+y = 0 \]