5.4.34 Problems 3301 to 3400

Table 5.481: Second ODE homogeneous ODE

#

ODE

Mathematica

Maple

16624

\[ {}9 x^{\prime \prime }+4 x = 0 \]

16625

\[ {}x^{\prime \prime }+64 x = 0 \]

16626

\[ {}x^{\prime \prime }+100 x = 0 \]

16627

\[ {}x^{\prime \prime }+x = 0 \]

16628

\[ {}x^{\prime \prime }+4 x = 0 \]

16629

\[ {}x^{\prime \prime }+16 x = 0 \]

16630

\[ {}x^{\prime \prime }+256 x = 0 \]

16631

\[ {}x^{\prime \prime }+9 x = 0 \]

16632

\[ {}10 x^{\prime \prime }+\frac {x}{10} = 0 \]

16633

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]

16634

\[ {}\frac {x^{\prime \prime }}{32}+2 x^{\prime }+x = 0 \]

16635

\[ {}\frac {x^{\prime \prime }}{4}+2 x^{\prime }+x = 0 \]

16636

\[ {}4 x^{\prime \prime }+2 x^{\prime }+8 x = 0 \]

16637

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = 0 \]

16638

\[ {}x^{\prime \prime }+4 x^{\prime }+20 x = 0 \]

16660

\[ {}x^{\prime \prime }-3 x^{\prime }+4 x = 0 \]

16661

\[ {}x^{\prime \prime }+6 x^{\prime }+9 x = 0 \]

16908

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

16911

\[ {}y^{\prime \prime }+y = 0 \]

16913

\[ {}y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

16920

\[ {}x y^{\prime \prime } = y^{\prime } \]

16921

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

16922

\[ {}x y^{\prime \prime } = \left (2 x^{2}+1\right ) y^{\prime } \]

16924

\[ {}x \ln \left (x \right ) y^{\prime \prime } = y^{\prime } \]

16926

\[ {}2 y^{\prime \prime } = \frac {y^{\prime }}{x}+\frac {x^{2}}{y^{\prime }} \]

16929

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

16930

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

16931

\[ {}y^{\prime \prime } = \sqrt {1-{y^{\prime }}^{2}} \]

16933

\[ {}y^{\prime \prime } = \sqrt {1+y^{\prime }} \]

16934

\[ {}y^{\prime \prime } = y^{\prime } \ln \left (y^{\prime }\right ) \]

16936

\[ {}y^{\prime \prime } = y^{\prime } \left (1+y^{\prime }\right ) \]

16937

\[ {}3 y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

16939

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \]

16940

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]

16941

\[ {}3 y^{\prime } y^{\prime \prime } = 2 y \]

16942

\[ {}2 y^{\prime \prime } = 3 y^{2} \]

16943

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

16944

\[ {}y y^{\prime \prime } = y^{\prime }+{y^{\prime }}^{2} \]

16948

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } y^{2} \]

16949

\[ {}y^{\prime \prime } = {\mathrm e}^{2 y} \]

16950

\[ {}2 y y^{\prime \prime }-3 {y^{\prime }}^{2} = 4 y^{2} \]

16952

\[ {}y^{\prime \prime }-y = 0 \]

16953

\[ {}3 y^{\prime \prime }-2 y^{\prime }-8 y = 0 \]

16955

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

16956

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]

16958

\[ {}y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

16960

\[ {}4 y^{\prime \prime }-8 y^{\prime }+5 y = 0 \]

16963

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

16964

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = 0 \]

17117

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

17118

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

17119

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+6 y = 0 \]

17120

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

17121

\[ {}\left (x +2\right )^{2} y^{\prime \prime }+3 \left (x +2\right ) y^{\prime }-3 y = 0 \]

17122

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }+4 y = 0 \]

17135

\[ {}\left (2 x +1\right ) y^{\prime \prime }+\left (4 x -2\right ) y^{\prime }-8 y = 0 \]

17136

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x -3\right ) y^{\prime }-2 y = 0 \]

17138

\[ {}x^{2} \left (-1+\ln \left (x \right )\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

17139

\[ {}y^{\prime \prime }+\left (\tan \left (x \right )-2 \cot \left (x \right )\right ) y^{\prime }+2 \cot \left (x \right )^{2} y = 0 \]

17140

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y = 0 \]

17170

\[ {}x^{\prime \prime }+x^{\prime }+x = 0 \]

17171

\[ {}x^{\prime \prime }+2 x^{\prime }+6 x = 0 \]

17172

\[ {}x^{\prime \prime }+2 x^{\prime }+x = 0 \]

17173

\[ {}x^{\prime \prime }+{x^{\prime }}^{2}+x = 0 \]

17174

\[ {}x^{\prime \prime }-2 {x^{\prime }}^{2}+x^{\prime }-2 x = 0 \]

17175

\[ {}x^{\prime \prime }-x \,{\mathrm e}^{x^{\prime }} = 0 \]

17176

\[ {}x^{\prime \prime }+{\mathrm e}^{-x^{\prime }}-x = 0 \]

17177

\[ {}x^{\prime \prime }+x {x^{\prime }}^{2} = 0 \]

17178

\[ {}x^{\prime \prime }+\left (x+2\right ) x^{\prime } = 0 \]

17179

\[ {}x^{\prime \prime }-x^{\prime }+x-x^{2} = 0 \]

17180

\[ {}y^{\prime \prime }+\lambda y = 0 \]

17181

\[ {}y^{\prime \prime }+\lambda y = 0 \]

17182

\[ {}y^{\prime \prime }-y = 0 \]

17183

\[ {}y^{\prime \prime }+y = 0 \]

17185

\[ {}y^{\prime \prime }+y = 0 \]

17186

\[ {}y^{\prime \prime }-y = 0 \]

17187

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

17188

\[ {}y^{\prime \prime }+\alpha y^{\prime } = 0 \]

17191

\[ {}y^{\prime \prime }+\lambda ^{2} y = 0 \]

17192

\[ {}y^{\prime \prime }+\lambda ^{2} y = 0 \]

17195

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

17216

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (4 x^{2}-\frac {1}{9}\right ) y = 0 \]

17217

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

17218

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+\frac {y}{9} = 0 \]

17219

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+4 y = 0 \]

17220

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+4 \left (x^{4}-1\right ) y = 0 \]

17221

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+\frac {y}{4} = 0 \]

17222

\[ {}y^{\prime \prime }+\frac {5 y^{\prime }}{x}+y = 0 \]

17223

\[ {}y^{\prime \prime }+\frac {3 y^{\prime }}{x}+4 y = 0 \]

17288

\[ {}x^{\prime \prime } = 0 \]

17291

\[ {}x^{\prime \prime }+x^{\prime } = 0 \]

17292

\[ {}x^{\prime \prime }+x^{\prime } = 0 \]

17545

\[ {}y^{\prime \prime }+t y = 0 \]

17546

\[ {}y^{\prime \prime }+y^{\prime }+y+y^{3} = 0 \]

17547

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+\alpha \left (\alpha +1\right ) y = 0 \]

17548

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (-\nu ^{2}+x^{2}\right ) y = 0 \]

17549

\[ {}y^{\prime \prime }+\mu \left (1-y^{2}\right ) y^{\prime }+y = 0 \]

17552

\[ {}y^{\prime \prime }+y = 0 \]

17553

\[ {}y^{\prime \prime }+9 y = 0 \]

17554

\[ {}y^{\prime \prime }+y^{\prime }+16 y = 0 \]