5.9.51 Problems 5001 to 5100

Table 5.729: First order ode linear in derivative

#

ODE

Mathematica

Maple

13034

\[ {}x^{\prime } = x \left (1-\frac {x}{4}\right ) \]

13035

\[ {}x^{\prime } = x^{2}+t^{2} \]

13036

\[ {}x^{\prime } = t \cos \left (t^{2}\right ) \]

13037

\[ {}x^{\prime } = \frac {t +1}{\sqrt {t}} \]

13039

\[ {}x^{\prime } = t \,{\mathrm e}^{-2 t} \]

13040

\[ {}x^{\prime } = \frac {1}{t \ln \left (t \right )} \]

13041

\[ {}\sqrt {t}\, x^{\prime } = \cos \left (\sqrt {t}\right ) \]

13042

\[ {}x^{\prime } = \frac {{\mathrm e}^{-t}}{\sqrt {t}} \]

13044

\[ {}x^{\prime } = \sqrt {x} \]

13045

\[ {}x^{\prime } = {\mathrm e}^{-2 x} \]

13046

\[ {}y^{\prime } = 1+y^{2} \]

13047

\[ {}u^{\prime } = \frac {1}{5-2 u} \]

13048

\[ {}x^{\prime } = a x+b \]

13049

\[ {}Q^{\prime } = \frac {Q}{4+Q^{2}} \]

13050

\[ {}x^{\prime } = {\mathrm e}^{x^{2}} \]

13051

\[ {}y^{\prime } = r \left (a -y\right ) \]

13052

\[ {}x^{\prime } = \frac {2 x}{t +1} \]

13053

\[ {}\theta ^{\prime } = t \sqrt {t^{2}+1}\, \sec \left (\theta \right ) \]

13054

\[ {}\left (2 u+1\right ) u^{\prime }-t -1 = 0 \]

13055

\[ {}R^{\prime } = \left (t +1\right ) \left (1+R^{2}\right ) \]

13056

\[ {}y^{\prime }+y+\frac {1}{y} = 0 \]

13057

\[ {}\left (t +1\right ) x^{\prime }+x^{2} = 0 \]

13058

\[ {}y^{\prime } = \frac {1}{2 y+1} \]

13059

\[ {}x^{\prime } = \left (4 t -x\right )^{2} \]

13060

\[ {}x^{\prime } = 2 t x^{2} \]

13061

\[ {}x^{\prime } = t^{2} {\mathrm e}^{-x} \]

13062

\[ {}x^{\prime } = x \left (4+x\right ) \]

13063

\[ {}x^{\prime } = {\mathrm e}^{t +x} \]

13064

\[ {}T^{\prime } = 2 a t \left (T^{2}-a^{2}\right ) \]

13065

\[ {}y^{\prime } = t^{2} \tan \left (y\right ) \]

13066

\[ {}x^{\prime } = \frac {\left (4+2 t \right ) x}{\ln \left (x\right )} \]

13067

\[ {}y^{\prime } = \frac {2 t y^{2}}{t^{2}+1} \]

13068

\[ {}x^{\prime } = \frac {t^{2}}{1-x^{2}} \]

13069

\[ {}x^{\prime } = 6 t \left (x-1\right )^{{2}/{3}} \]

13070

\[ {}x^{\prime } = \frac {4 t^{2}+3 x^{2}}{2 t x} \]

13071

\[ {}x^{\prime } {\mathrm e}^{2 t}+2 x \,{\mathrm e}^{2 t} = {\mathrm e}^{-t} \]

13073

\[ {}y^{\prime } = \frac {y^{2}+2 t y}{t^{2}} \]

13074

\[ {}y^{\prime } = -y^{2} {\mathrm e}^{-t^{2}} \]

13075

\[ {}x^{\prime } = 2 t^{3} x-6 \]

13076

\[ {}\cos \left (t \right ) x^{\prime }-2 x \sin \left (x\right ) = 0 \]

13077

\[ {}x^{\prime } = t -x^{2} \]

13078

\[ {}7 t^{2} x^{\prime } = 3 x-2 t \]

13079

\[ {}x x^{\prime } = 1-t x \]

13081

\[ {}x^{\prime } = -\frac {2 x}{t}+t \]

13082

\[ {}y^{\prime }+y = {\mathrm e}^{t} \]

13083

\[ {}x^{\prime }+2 t x = {\mathrm e}^{-t^{2}} \]

13084

\[ {}t x^{\prime } = -x+t^{2} \]

13085

\[ {}\theta ^{\prime } = -a \theta +{\mathrm e}^{b t} \]

13086

\[ {}\left (t^{2}+1\right ) x^{\prime } = -3 t x+6 t \]

13087

\[ {}x^{\prime }+\frac {5 x}{t} = t +1 \]

13088

\[ {}x^{\prime } = \left (a +\frac {b}{t}\right ) x \]

13089

\[ {}R^{\prime }+\frac {R}{t} = \frac {2}{t^{2}+1} \]

13090

\[ {}N^{\prime } = N-9 \,{\mathrm e}^{-t} \]

13091

\[ {}\cos \left (\theta \right ) v^{\prime }+v = 3 \]

13092

\[ {}R^{\prime } = \frac {R}{t}+t \,{\mathrm e}^{-t} \]

13093

\[ {}y^{\prime }+a y = \sqrt {t +1} \]

13094

\[ {}x^{\prime } = 2 t x \]

13095

\[ {}x^{\prime }+\frac {{\mathrm e}^{-t} x}{t} = t \]

13097

\[ {}x^{\prime } = \left (t +x\right )^{2} \]

13098

\[ {}x^{\prime } = a x+b \]

13099

\[ {}x^{\prime }+p \left (t \right ) x = 0 \]

13100

\[ {}x^{\prime } = \frac {2 x}{3 t}+\frac {2 t}{x} \]

13101

\[ {}x^{\prime } = x \left (1+x \,{\mathrm e}^{t}\right ) \]

13102

\[ {}x^{\prime } = -\frac {x}{t}+\frac {1}{t x^{2}} \]

13103

\[ {}t^{2} y^{\prime }+2 t y-y^{2} = 0 \]

13104

\[ {}x^{\prime } = a x+b x^{3} \]

13105

\[ {}w^{\prime } = t w+t^{3} w^{3} \]

13106

\[ {}x^{3}+3 t x^{2} x^{\prime } = 0 \]

13107

\[ {}t^{3}+\frac {x}{t}+\left (x^{2}+\ln \left (t \right )\right ) x^{\prime } = 0 \]

13108

\[ {}x^{\prime } = -\frac {\sin \left (x\right )-x \sin \left (t \right )}{t \cos \left (x\right )+\cos \left (t \right )} \]

13109

\[ {}x+3 t x^{2} x^{\prime } = 0 \]

13110

\[ {}x^{2}-t^{2} x^{\prime } = 0 \]

13111

\[ {}t \cot \left (x\right ) x^{\prime } = -2 \]

13184

\[ {}x^{\prime }+5 x = \operatorname {Heaviside}\left (t -2\right ) \]

13185

\[ {}x^{\prime }+x = \sin \left (2 t \right ) \]

13193

\[ {}x^{\prime } = 2 x+\operatorname {Heaviside}\left (t -1\right ) \]

13195

\[ {}x^{\prime } = x-2 \operatorname {Heaviside}\left (t -1\right ) \]

13196

\[ {}x^{\prime } = -x+\operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right ) \]

13200

\[ {}x^{\prime }+3 x = \delta \left (t -1\right )+\operatorname {Heaviside}\left (t -4\right ) \]

13246

\[ {}y^{\prime }+y = 1+x \]

13250

\[ {}2 x y y^{\prime }+x^{2}+y^{2} = 0 \]

13251

\[ {}x y^{\prime }+y = x^{3} y^{3} \]

13252

\[ {}y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \]

13253

\[ {}y^{\prime }+4 x y = 8 x \]

13258

\[ {}y^{\prime }+2 y = 6 \,{\mathrm e}^{x}+4 x \,{\mathrm e}^{-2 x} \]

13262

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x} \]

13263

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x} \]

13269

\[ {}y^{\prime } = x^{2} \sin \left (y\right ) \]

13270

\[ {}y^{\prime } = \frac {y^{2}}{x -2} \]

13271

\[ {}y^{\prime } = y^{{1}/{3}} \]

13272

\[ {}3 x +2 y+\left (y+2 x \right ) y^{\prime } = 0 \]

13273

\[ {}y^{2}+3+\left (2 x y-4\right ) y^{\prime } = 0 \]

13274

\[ {}2 x y+1+\left (x^{2}+4 y\right ) y^{\prime } = 0 \]

13275

\[ {}3 x^{2} y+2-\left (x^{3}+y\right ) y^{\prime } = 0 \]

13276

\[ {}6 x y+2 y^{2}-5+\left (3 x^{2}+4 x y-6\right ) y^{\prime } = 0 \]

13277

\[ {}y \sec \left (x \right )^{2}+\sec \left (x \right ) \tan \left (x \right )+\left (\tan \left (x \right )+2 y\right ) y^{\prime } = 0 \]

13278

\[ {}\frac {x}{y^{2}}+x +\left (\frac {x^{2}}{y^{3}}+y\right ) y^{\prime } = 0 \]

13279

\[ {}\frac {\left (2 s-1\right ) s^{\prime }}{t}+\frac {s-s^{2}}{t^{2}} = 0 \]

13280

\[ {}\frac {2 y^{{3}/{2}}+1}{\sqrt {x}}+\left (3 \sqrt {x}\, \sqrt {y}-1\right ) y^{\prime } = 0 \]

13281

\[ {}2 x y-3+\left (x^{2}+4 y\right ) y^{\prime } = 0 \]