5.14.6 Problems 501 to 600

Table 5.859: First order ode non-linear in derivative

#

ODE

Mathematica

Maple

7515

\[ {}{y^{\prime }}^{2}-a^{2} y^{2} = 0 \]

7516

\[ {}{y^{\prime }}^{2} = 4 x^{2} \]

7544

\[ {}{y^{\prime }}^{2} = a^{2}-y^{2} \]

7783

\[ {}x y^{\prime }+y = x^{4} {y^{\prime }}^{2} \]

8435

\[ {}x^{2} {y^{\prime }}^{2}-y^{2} = 0 \]

8436

\[ {}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

8437

\[ {}x^{2} {y^{\prime }}^{2}-5 x y y^{\prime }+6 y^{2} = 0 \]

8438

\[ {}x^{2} {y^{\prime }}^{2}+x y^{\prime }-y^{2}-y = 0 \]

8439

\[ {}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-x y = 0 \]

8440

\[ {}{y^{\prime }}^{2}-\left (x^{2} y+3\right ) y^{\prime }+3 x^{2} y = 0 \]

8441

\[ {}x {y^{\prime }}^{2}-\left (x y+1\right ) y^{\prime }+y = 0 \]

8442

\[ {}{y^{\prime }}^{2}-x^{2} y^{2} = 0 \]

8443

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

8444

\[ {}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-x y = 0 \]

8445

\[ {}{y^{\prime }}^{2}-x y \left (x +y\right ) y^{\prime }+x^{3} y^{3} = 0 \]

8446

\[ {}\left (4 x -y\right ) {y^{\prime }}^{2}+6 \left (x -y\right ) y^{\prime }+2 x -5 y = 0 \]

8447

\[ {}\left (x -y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

8448

\[ {}x y {y^{\prime }}^{2}+\left (x y^{2}-1\right ) y^{\prime }-y = 0 \]

8449

\[ {}\left (x^{2}+y^{2}\right )^{2} {y^{\prime }}^{2} = 4 x^{2} y^{2} \]

8450

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2}+\left (2 y^{2}+x y-x^{2}\right ) y^{\prime }+y \left (y-x \right ) = 0 \]

8451

\[ {}x y \left (x^{2}+y^{2}\right ) \left ({y^{\prime }}^{2}-1\right ) = y^{\prime } \left (x^{4}+x^{2} y^{2}+y^{4}\right ) \]

8452

\[ {}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+x y\right ) y^{\prime }-x y = 0 \]

8453

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

8454

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0 \]

8455

\[ {}3 x^{4} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

8456

\[ {}{y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

8457

\[ {}{y^{\prime }}^{2}-x y^{\prime }+y = 0 \]

8458

\[ {}{y^{\prime }}^{2}+4 x^{5} y^{\prime }-12 x^{4} y = 0 \]

8459

\[ {}4 y^{3} {y^{\prime }}^{2}-4 x y^{\prime }+y = 0 \]

8460

\[ {}4 y^{3} {y^{\prime }}^{2}+4 x y^{\prime }+y = 0 \]

8461

\[ {}{y^{\prime }}^{3}+x {y^{\prime }}^{2}-y = 0 \]

8462

\[ {}y^{4} {y^{\prime }}^{3}-6 x y^{\prime }+2 y = 0 \]

8463

\[ {}{y^{\prime }}^{2}+x^{3} y^{\prime }-2 x^{2} y = 0 \]

8464

\[ {}{y^{\prime }}^{2}+4 x^{5} y^{\prime }-12 x^{4} y = 0 \]

8465

\[ {}2 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}+x^{4} = 0 \]

8466

\[ {}{y^{\prime }}^{2}-x y^{\prime }+y = 0 \]

8467

\[ {}y = x y^{\prime }+k {y^{\prime }}^{2} \]

8468

\[ {}x^{8} {y^{\prime }}^{2}+3 x y^{\prime }+9 y = 0 \]

8469

\[ {}x^{4} {y^{\prime }}^{2}+2 x^{3} y y^{\prime }-4 = 0 \]

8470

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0 \]

8471

\[ {}3 x^{4} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

8472

\[ {}x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y = 0 \]

8473

\[ {}y^{\prime } \left (x y^{\prime }-y+k \right )+a = 0 \]

8474

\[ {}x^{6} {y^{\prime }}^{3}-3 x y^{\prime }-3 y = 0 \]

8475

\[ {}y = x^{6} {y^{\prime }}^{3}-x y^{\prime } \]

8476

\[ {}{y^{\prime }}^{4} x -2 {y^{\prime }}^{3} y+12 x^{3} = 0 \]

8477

\[ {}x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1 = 0 \]

8478

\[ {}{y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

8479

\[ {}2 {y^{\prime }}^{3}+x y^{\prime }-2 y = 0 \]

8480

\[ {}2 {y^{\prime }}^{2}+x y^{\prime }-2 y = 0 \]

8481

\[ {}{y^{\prime }}^{3}+2 x y^{\prime }-y = 0 \]

8482

\[ {}4 x {y^{\prime }}^{2}-3 y y^{\prime }+3 = 0 \]

8483

\[ {}{y^{\prime }}^{3}-x y^{\prime }+2 y = 0 \]

8484

\[ {}5 {y^{\prime }}^{2}+6 x y^{\prime }-2 y = 0 \]

8485

\[ {}2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y = 0 \]

8486

\[ {}5 {y^{\prime }}^{2}+3 x y^{\prime }-y = 0 \]

8487

\[ {}{y^{\prime }}^{2}+3 x y^{\prime }-y = 0 \]

8488

\[ {}y = x y^{\prime }+x^{3} {y^{\prime }}^{2} \]

8533

\[ {}x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+4 = 0 \]

8534

\[ {}6 x {y^{\prime }}^{2}-\left (2 y+3 x \right ) y^{\prime }+y = 0 \]

8535

\[ {}9 {y^{\prime }}^{2}+3 y^{4} y^{\prime } x +y^{5} = 0 \]

8536

\[ {}4 y^{3} {y^{\prime }}^{2}-4 x y^{\prime }+y = 0 \]

8537

\[ {}x^{6} {y^{\prime }}^{2}-2 x y^{\prime }-4 y = 0 \]

8538

\[ {}5 {y^{\prime }}^{2}+6 x y^{\prime }-2 y = 0 \]

8539

\[ {}y^{2} {y^{\prime }}^{2}-\left (1+x \right ) y y^{\prime }+x = 0 \]

8540

\[ {}4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9 = 0 \]

8541

\[ {}4 y^{2} {y^{\prime }}^{3}-2 x y^{\prime }+y = 0 \]

8542

\[ {}{y^{\prime }}^{4}+x y^{\prime }-3 y = 0 \]

8543

\[ {}x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{\prime } y^{2}+1 = 0 \]

8544

\[ {}16 x {y^{\prime }}^{2}+8 y y^{\prime }+y^{6} = 0 \]

8545

\[ {}x {y^{\prime }}^{2}-\left (x^{2}+1\right ) y^{\prime }+x = 0 \]

8546

\[ {}{y^{\prime }}^{3}-2 x y^{\prime }-y = 0 \]

8547

\[ {}9 x y^{4} {y^{\prime }}^{2}-3 y^{5} y^{\prime }-1 = 0 \]

8548

\[ {}x^{2} {y^{\prime }}^{2}-\left (1+2 x y\right ) y^{\prime }+y^{2}+1 = 0 \]

8549

\[ {}x^{6} {y^{\prime }}^{2} = 16 y+8 x y^{\prime } \]

8550

\[ {}x^{2} {y^{\prime }}^{2} = \left (x -y\right )^{2} \]

8551

\[ {}\left (1+y^{\prime }\right )^{2} \left (-x y^{\prime }+y\right ) = 1 \]

8552

\[ {}{y^{\prime }}^{3}-{y^{\prime }}^{2}+x y^{\prime }-y = 0 \]

8553

\[ {}x {y^{\prime }}^{2}+y \left (1-x \right ) y^{\prime }-y^{2} = 0 \]

8554

\[ {}y {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \]

8555

\[ {}x {y^{\prime }}^{2}+\left (k -x -y\right ) y^{\prime }+y = 0 \]

8556

\[ {}x {y^{\prime }}^{3}-2 y {y^{\prime }}^{2}+4 x^{2} = 0 \]

8729

\[ {}\frac {{y^{\prime }}^{2}}{4}-x y^{\prime }+y = 0 \]

8735

\[ {}y = x y^{\prime }+x^{2} {y^{\prime }}^{2} \]

8741

\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2} \]

8747

\[ {}f^{\prime } x -f = \frac {{f^{\prime }}^{2} \left (1-{f^{\prime }}^{\lambda }\right )^{2}}{\lambda ^{2}} \]

8756

\[ {}y = x {y^{\prime }}^{2} \]

8757

\[ {}y y^{\prime } = 1-x {y^{\prime }}^{3} \]

8790

\[ {}\frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}} = -x \]

8791

\[ {}\frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}} = -x \]

8921

\[ {}{y^{\prime }}^{2}+y^{2} = \sec \left (x \right )^{4} \]

8922

\[ {}\left (y-2 x y^{\prime }\right )^{2} = {y^{\prime }}^{3} \]

8976

\[ {}h^{2}+\frac {2 a h}{\sqrt {1+{h^{\prime }}^{2}}} = b^{2} \]

9029

\[ {}x \sin \left (x \right ) {y^{\prime }}^{2} = 0 \]

9030

\[ {}y {y^{\prime }}^{2} = 0 \]

9031

\[ {}{y^{\prime }}^{n} = 0 \]

9032

\[ {}x {y^{\prime }}^{n} = 0 \]

9033

\[ {}{y^{\prime }}^{2} = x \]

9034

\[ {}{y^{\prime }}^{2} = x +y \]

9035

\[ {}{y^{\prime }}^{2} = \frac {y}{x} \]