5.14.5 Problems 401 to 500

Table 5.857: First order ode non-linear in derivative

#

ODE

Mathematica

Maple

5655

\[ {}{y^{\prime }}^{6} = \left (y-a \right )^{4} \left (y-b \right )^{3} \]

5656

\[ {}{y^{\prime }}^{6}+f \left (x \right ) \left (y-a \right )^{4} \left (y-b \right )^{3} = 0 \]

5657

\[ {}{y^{\prime }}^{6}+f \left (x \right ) \left (y-a \right )^{5} \left (y-b \right )^{3} = 0 \]

5658

\[ {}{y^{\prime }}^{6}+f \left (x \right ) \left (y-a \right )^{5} \left (y-b \right )^{4} = 0 \]

5659

\[ {}x^{2} \left ({y^{\prime }}^{6}+3 y^{4}+3 y^{2}+1\right ) = a^{2} \]

5660

\[ {}2 \sqrt {a y^{\prime }}+x y^{\prime }-y = 0 \]

5661

\[ {}\left (x -y\right ) \sqrt {y^{\prime }} = a \left (1+y^{\prime }\right ) \]

5663

\[ {}\sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } = x \]

5664

\[ {}\sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } = y \]

5665

\[ {}\sqrt {1+{y^{\prime }}^{2}} = x y^{\prime } \]

5666

\[ {}\sqrt {a^{2}+b^{2} {y^{\prime }}^{2}}+x y^{\prime }-y = 0 \]

5667

\[ {}a \sqrt {1+{y^{\prime }}^{2}}+x y^{\prime }-y = 0 \]

5668

\[ {}a x \sqrt {1+{y^{\prime }}^{2}}+x y^{\prime }-y = 0 \]

5669

\[ {}\sqrt {\left (a \,x^{2}+y^{2}\right ) \left (1+{y^{\prime }}^{2}\right )}-y y^{\prime }-a x = 0 \]

5670

\[ {}a \left (1+{y^{\prime }}^{3}\right )^{{1}/{3}}+x y^{\prime }-y = 0 \]

5671

\[ {}\cos \left (y^{\prime }\right )+x y^{\prime } = y \]

5672

\[ {}a \cos \left (y^{\prime }\right )+b y^{\prime }+x = 0 \]

5673

\[ {}\sin \left (y^{\prime }\right )+y^{\prime } = x \]

5674

\[ {}y^{\prime } \sin \left (y^{\prime }\right )+\cos \left (y^{\prime }\right ) = y \]

5675

\[ {}{y^{\prime }}^{2} \left (x +\sin \left (y^{\prime }\right )\right ) = y \]

5676

\[ {}\left (1+{y^{\prime }}^{2}\right ) \sin \left (x y^{\prime }-y\right )^{2} = 1 \]

5677

\[ {}\left (1+{y^{\prime }}^{2}\right ) \left (\arctan \left (y^{\prime }\right )+a x \right )+y^{\prime } = 0 \]

5678

\[ {}{\mathrm e}^{y^{\prime }-y}-{y^{\prime }}^{2}+1 = 0 \]

5679

\[ {}\ln \left (y^{\prime }\right )+x y^{\prime }+a = 0 \]

5680

\[ {}\ln \left (y^{\prime }\right )+x y^{\prime }+a = y \]

5681

\[ {}\ln \left (y^{\prime }\right )+x y^{\prime }+a +b y = 0 \]

5682

\[ {}\ln \left (y^{\prime }\right )+4 x y^{\prime }-2 y = 0 \]

5683

\[ {}\ln \left (y^{\prime }\right )+a \left (x y^{\prime }-y\right ) = 0 \]

5684

\[ {}a \left (\ln \left (y^{\prime }\right )-y^{\prime }\right )-x +y = 0 \]

5685

\[ {}y \ln \left (y^{\prime }\right )+y^{\prime }-y \ln \left (y\right )-x y = 0 \]

5686

\[ {}y^{\prime } \ln \left (y^{\prime }\right )-\left (1+x \right ) y^{\prime }+y = 0 \]

5687

\[ {}y^{\prime } \ln \left (y^{\prime }+\sqrt {a +{y^{\prime }}^{2}}\right )-\sqrt {1+{y^{\prime }}^{2}}-x y^{\prime }+y = 0 \]

5688

\[ {}\ln \left (\cos \left (y^{\prime }\right )\right )+y^{\prime } \tan \left (y^{\prime }\right ) = y \]

5696

\[ {}y^{2} \left (1+{y^{\prime }}^{2}\right ) = R^{2} \]

5697

\[ {}y = x y^{\prime }+\frac {a y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}} \]

5698

\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2} \]

5750

\[ {}{y^{\prime }}^{2}-5 y^{\prime }+6 = 0 \]

5751

\[ {}{y^{\prime }}^{2}-\frac {a^{2}}{x^{2}} = 0 \]

5752

\[ {}{y^{\prime }}^{2} = \frac {1-x}{x} \]

5753

\[ {}{y^{\prime }}^{2}+\frac {2 x y^{\prime }}{y}-1 = 0 \]

5754

\[ {}y = a y^{\prime }+b {y^{\prime }}^{2} \]

5755

\[ {}x = a y^{\prime }+b {y^{\prime }}^{2} \]

5756

\[ {}y = \sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } \]

5757

\[ {}x = \sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } \]

5758

\[ {}y^{\prime }-\frac {\sqrt {1+{y^{\prime }}^{2}}}{x} = 0 \]

5759

\[ {}x^{2} \left (1+{y^{\prime }}^{2}\right )^{3}-a^{2} = 0 \]

5760

\[ {}1+{y^{\prime }}^{2} = \frac {\left (x +a \right )^{2}}{2 a x +x^{2}} \]

5761

\[ {}y = x y^{\prime }+y^{\prime }-{y^{\prime }}^{2} \]

5762

\[ {}y = x y^{\prime }+\sqrt {b^{2}-a^{2} {y^{\prime }}^{2}} \]

5763

\[ {}y = x y^{\prime }+x \sqrt {1+{y^{\prime }}^{2}} \]

5764

\[ {}y = x y^{\prime }+a x \sqrt {1+{y^{\prime }}^{2}} \]

5765

\[ {}x -y y^{\prime } = a {y^{\prime }}^{2} \]

5766

\[ {}x +y y^{\prime } = a \sqrt {1+{y^{\prime }}^{2}} \]

5767

\[ {}y y^{\prime } = x +y^{2}-y^{2} {y^{\prime }}^{2} \]

5768

\[ {}y-\frac {1}{\sqrt {1+{y^{\prime }}^{2}}} = x +\frac {y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}} \]

5769

\[ {}y-2 x y^{\prime } = x {y^{\prime }}^{2} \]

5770

\[ {}\frac {-x y^{\prime }+y}{y^{2}+y^{\prime }} = \frac {-x y^{\prime }+y}{1+x^{2} y^{\prime }} \]

6027

\[ {}y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

6028

\[ {}\left (-x^{2}+1\right ) {y^{\prime }}^{2}+1 = 0 \]

6571

\[ {}y = x y^{\prime }+{y^{\prime }}^{4} \]

6666

\[ {}x^{2} {y^{\prime }}^{2}+x y y^{\prime }-6 y^{2} = 0 \]

6667

\[ {}x {y^{\prime }}^{2}+\left (y-1-x^{2}\right ) y^{\prime }-x \left (y-1\right ) = 0 \]

6668

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0 \]

6669

\[ {}3 x^{4} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

6670

\[ {}8 y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

6671

\[ {}y^{2} {y^{\prime }}^{2}+3 x y^{\prime }-y = 0 \]

6672

\[ {}{y^{\prime }}^{2}-x y^{\prime }+y = 0 \]

6673

\[ {}16 y^{3} {y^{\prime }}^{2}-4 x y^{\prime }+y = 0 \]

6674

\[ {}x {y^{\prime }}^{5}-{y^{\prime }}^{4} y+\left (x^{2}+1\right ) {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+\left (y^{2}+x \right ) y^{\prime }-y = 0 \]

6675

\[ {}x {y^{\prime }}^{2}-y y^{\prime }-y = 0 \]

6676

\[ {}y = 2 x y^{\prime }+y^{2} {y^{\prime }}^{3} \]

6677

\[ {}{y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

6678

\[ {}y = \left (1+y^{\prime }\right ) x +{y^{\prime }}^{2} \]

6679

\[ {}y = 2 y^{\prime }+\sqrt {1+{y^{\prime }}^{2}} \]

6680

\[ {}y {y^{\prime }}^{2}-x y^{\prime }+3 y = 0 \]

6681

\[ {}y = x y^{\prime }-2 {y^{\prime }}^{2} \]

6682

\[ {}y^{2} {y^{\prime }}^{2}+3 x y^{\prime }-y = 0 \]

6683

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0 \]

6684

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+x +2 y = 0 \]

6685

\[ {}\left (3 y-1\right )^{2} {y^{\prime }}^{2} = 4 y \]

6686

\[ {}y = -x y^{\prime }+x^{4} {y^{\prime }}^{2} \]

6687

\[ {}2 y = {y^{\prime }}^{2}+4 x y^{\prime } \]

6688

\[ {}y \left (3-4 y\right )^{2} {y^{\prime }}^{2} = 4-4 y \]

6689

\[ {}{y^{\prime }}^{3}-4 x^{4} y^{\prime }+8 x^{3} y = 0 \]

6690

\[ {}\left (1+{y^{\prime }}^{2}\right ) \left (x -y\right )^{2} = \left (x +y y^{\prime }\right )^{2} \]

6883

\[ {}\sin \left (y^{\prime }\right ) = x +y \]

6884

\[ {}\sin \left (x^{\prime }\right )+y^{3} x = \sin \left (y \right ) \]

6918

\[ {}{y^{\prime }}^{2} = 4 y \]

6919

\[ {}{y^{\prime }}^{2} = 9-y^{2} \]

6921

\[ {}{y^{\prime }}^{2}-2 y^{\prime }+4 y = 4 x -1 \]

6928

\[ {}x {y^{\prime }}^{2}-4 y^{\prime }-12 x^{3} = 0 \]

6994

\[ {}{y^{\prime }}^{2} = 4 x^{2} \]

7005

\[ {}1+{y^{\prime }}^{2} = \frac {1}{y^{2}} \]

7132

\[ {}{y^{\prime }}^{2}+y^{2} = 1 \]

7137

\[ {}1+{x^{\prime }}^{2} = \frac {a}{y} \]

7439

\[ {}y^{\prime } \left (y^{\prime }+y\right ) = x \left (x +y\right ) \]

7440

\[ {}\left (x y^{\prime }+y\right )^{2} = y^{\prime } y^{2} \]

7441

\[ {}x^{2} {y^{\prime }}^{2}-3 x y y^{\prime }+2 y^{2} = 0 \]

7443

\[ {}y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

7514

\[ {}x +y y^{\prime } = a {y^{\prime }}^{2} \]