5.17.4 Problems 301 to 400

Table 5.883: Second order, non-linear and homogeneous

#

ODE

Mathematica

Maple

11773

\[ {}a \,x^{2} y y^{\prime \prime }+b \,x^{2} {y^{\prime }}^{2}+c x y y^{\prime }+d y^{2} = 0 \]

11774

\[ {}x \left (1+x \right )^{2} y y^{\prime \prime }-x \left (1+x \right )^{2} {y^{\prime }}^{2}+2 \left (1+x \right )^{2} y y^{\prime }-a \left (x +2\right ) y^{2} = 0 \]

11775

\[ {}8 \left (-x^{3}+1\right ) y y^{\prime \prime }-4 \left (-x^{3}+1\right ) {y^{\prime }}^{2}-12 x^{2} y y^{\prime }+3 x y^{2} = 0 \]

11776

\[ {}\operatorname {f0} \left (x \right ) y y^{\prime \prime }+\operatorname {f1} \left (x \right ) {y^{\prime }}^{2}+\operatorname {f2} \left (x \right ) y y^{\prime }+\operatorname {f3} \left (x \right ) y^{2} = 0 \]

11780

\[ {}\left (1+y^{2}\right ) y^{\prime \prime }+\left (1-2 y\right ) {y^{\prime }}^{2} = 0 \]

11781

\[ {}\left (1+y^{2}\right ) y^{\prime \prime }-3 y {y^{\prime }}^{2} = 0 \]

11782

\[ {}\left (y^{2}+x \right ) y^{\prime \prime }-2 \left (x -y^{2}\right ) {y^{\prime }}^{3}+y^{\prime } \left (1+4 y y^{\prime }\right ) = 0 \]

11783

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime \prime }-\left (1+{y^{\prime }}^{2}\right ) \left (x y^{\prime }-y\right ) = 0 \]

11784

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime \prime }-2 \left (1+{y^{\prime }}^{2}\right ) \left (x y^{\prime }-y\right ) = 0 \]

11785

\[ {}2 y \left (1-y\right ) y^{\prime \prime }-\left (1-2 y\right ) {y^{\prime }}^{2}+y \left (1-y\right ) y^{\prime } f \left (x \right ) = 0 \]

11786

\[ {}2 y \left (1-y\right ) y^{\prime \prime }-\left (1-3 y\right ) {y^{\prime }}^{2}+h \left (y\right ) = 0 \]

11787

\[ {}2 y \left (y-1\right ) y^{\prime \prime }-\left (3 y-1\right ) {y^{\prime }}^{2}+4 y y^{\prime } \left (f \left (x \right ) y+g \left (x \right )\right )+4 y^{2} \left (y-1\right ) \left (g \left (x \right )^{2}-f \left (x \right )^{2}-g^{\prime }\left (x \right )-f^{\prime }\left (x \right )\right ) = 0 \]

11788

\[ {}-2 y \left (1-y\right ) y^{\prime \prime }+\left (1-3 y\right ) {y^{\prime }}^{2}-4 y y^{\prime } \left (f \left (x \right ) y+g \left (x \right )\right )+\left (1-y\right )^{3} \left (\operatorname {f0} \left (x \right )^{2} y^{2}-\operatorname {f1} \left (x \right )^{2}\right )+4 y^{2} \left (1-y\right ) \left (f \left (x \right )^{2}-g \left (x \right )^{2}-g^{\prime }\left (x \right )-f^{\prime }\left (x \right )\right ) = 0 \]

11789

\[ {}3 y \left (1-y\right ) y^{\prime \prime }-2 \left (1-2 y\right ) {y^{\prime }}^{2}-h \left (y\right ) = 0 \]

11790

\[ {}\left (1-y\right ) y^{\prime \prime }-3 \left (1-2 y\right ) {y^{\prime }}^{2}-h \left (y\right ) = 0 \]

11791

\[ {}a y \left (y-1\right ) y^{\prime \prime }+\left (b y+c \right ) {y^{\prime }}^{2}+h \left (y\right ) = 0 \]

11792

\[ {}a y \left (y-1\right ) y^{\prime \prime }-\left (a -1\right ) \left (2 y-1\right ) {y^{\prime }}^{2}+f y \left (y-1\right ) y^{\prime } = 0 \]

11793

\[ {}a b y \left (y-1\right ) y^{\prime \prime }-\left (\left (2 a b -a -b \right ) y+\left (1-a \right ) b \right ) {y^{\prime }}^{2}+f y \left (y-1\right ) y^{\prime } = 0 \]

11795

\[ {}\left (a^{2}-x^{2}\right ) \left (a^{2}-y^{2}\right ) y^{\prime \prime }+\left (a^{2}-x^{2}\right ) y {y^{\prime }}^{2}-x \left (a^{2}-y^{2}\right ) y^{\prime } = 0 \]

11796

\[ {}2 x^{2} y \left (y-1\right ) y^{\prime \prime }-x^{2} \left (3 y-1\right ) {y^{\prime }}^{2}+2 x y \left (y-1\right ) y^{\prime }+\left (y^{2} a +b \right ) \left (y-1\right )^{3}+c x y^{2} \left (y-1\right )+d \,x^{2} y^{2} \left (1+y\right ) = 0 \]

11797

\[ {}x^{3} y^{2} y^{\prime \prime }+\left (x +y\right ) \left (x y^{\prime }-y\right )^{3} = 0 \]

11799

\[ {}y \left (1+y^{2}\right ) y^{\prime \prime }+\left (1-3 y^{2}\right ) {y^{\prime }}^{2} = 0 \]

11802

\[ {}2 \left (y-a \right ) \left (y-b \right ) \left (y-c \right ) y^{\prime \prime }-\left (\left (y-a \right )^{2} \left (y-b \right ) \left (y-c \right )+\left (y-b \right ) \left (y-c \right )\right ) {y^{\prime }}^{2}+\left (y-a \right )^{2} \left (y-b \right )^{2} \left (y-c \right )^{2} \left (A_{0} +\frac {B_{0}}{\left (y-a \right )^{2}}+\frac {C_{1}}{\left (y-b \right )^{2}}+\frac {D_{0}}{\left (y-c \right )^{2}}\right ) = 0 \]

11803

\[ {}\left (4 y^{3}-a y-b \right ) y^{\prime \prime }-\left (6 y^{2}-\frac {a}{2}\right ) {y^{\prime }}^{2} = 0 \]

11804

\[ {}\left (4 y^{3}-a y-b \right ) \left (y^{\prime \prime }+f y^{\prime }\right )-\left (6 y^{2}-\frac {a}{2}\right ) {y^{\prime }}^{2} = 0 \]

11805

\[ {}-2 x y \left (1-x \right ) \left (1-y\right ) \left (x -y\right ) y^{\prime \prime }+x \left (1-x \right ) \left (x -2 x y-2 y+3 y^{2}\right ) {y^{\prime }}^{2}+2 y \left (1-y\right ) \left (x^{2}+y-2 x y\right ) y^{\prime }-y^{2} \left (1-y\right )^{2}-f \left (y \left (y-1\right ) \left (y-x \right )\right )^{{3}/{2}} = 0 \]

11806

\[ {}2 x^{2} y \left (1-x \right )^{2} \left (1-y\right ) \left (x -y\right ) y^{\prime \prime }-x^{2} \left (1-x \right )^{2} \left (x -2 x y-2 y+3 y^{2}\right ) {y^{\prime }}^{2}-2 x y \left (1-x \right ) \left (1-y\right ) \left (x^{2}+y-2 x y\right ) y^{\prime }+b x \left (1-y\right )^{2} \left (x -y\right )^{2}-c \left (1-x \right ) y^{2} \left (x -y\right )^{2}-d x y^{2} \left (1-x \right ) \left (1-y\right )^{2}+a y^{2} \left (x -y\right )^{2} \left (1-y\right )^{2} = 0 \]

11807

\[ {}\left (y^{2}-1\right ) \left (a^{2} y^{2}-1\right ) y^{\prime \prime }+b \sqrt {\left (1-y^{2}\right ) \left (1-a^{2} y^{2}\right )}\, {y^{\prime }}^{2}+\left (1+a^{2}-2 a^{2} y^{2}\right ) y {y^{\prime }}^{2} = 0 \]

11808

\[ {}\left (c +2 b x +a \,x^{2}+y^{2}\right )^{2} y^{\prime \prime }+y d = 0 \]

11810

\[ {}\sqrt {x^{2}+y^{2}}\, y^{\prime \prime }-a \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = 0 \]

11811

\[ {}y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0 \]

11812

\[ {}\left (b +a \sin \left (y\right )^{2}\right ) y^{\prime \prime }+a {y^{\prime }}^{2} \cos \left (y\right ) \sin \left (y\right )+A y \left (c +a \sin \left (y\right )^{2}\right ) = 0 \]

11813

\[ {}h \left (y\right ) y^{\prime \prime }+a h \left (y\right ) {y^{\prime }}^{2}+j \left (y\right ) = 0 \]

11814

\[ {}h \left (y\right ) y^{\prime \prime }-D\left (h \right )\left (y\right ) {y^{\prime }}^{2}-h \left (y\right )^{2} j \left (x , \frac {y^{\prime }}{h \left (y\right )}\right ) = 0 \]

11815

\[ {}y^{\prime } y^{\prime \prime }-x^{2} y y^{\prime }-x y^{2} = 0 \]

11816

\[ {}\left (x y^{\prime }-y\right ) y^{\prime \prime }+4 {y^{\prime }}^{2} = 0 \]

11817

\[ {}\left (x y^{\prime }-y\right ) y^{\prime \prime }-\left (1+{y^{\prime }}^{2}\right )^{2} = 0 \]

11818

\[ {}a \,x^{3} y^{\prime } y^{\prime \prime }+b y^{2} = 0 \]

11819

\[ {}\left (\operatorname {f1} y^{\prime }+\operatorname {f2} y\right ) y^{\prime \prime }+\operatorname {f3} {y^{\prime }}^{2}+\operatorname {f4} \left (x \right ) y y^{\prime }+\operatorname {f5} \left (x \right ) y^{2} = 0 \]

11820

\[ {}\left (x^{2}+2 y^{\prime } y^{2}\right ) y^{\prime \prime }+2 {y^{\prime }}^{3} y+3 x y^{\prime }+y = 0 \]

11821

\[ {}\left ({y^{\prime }}^{2}+y^{2}\right ) y^{\prime \prime }+y^{3} = 0 \]

11826

\[ {}a^{2} {y^{\prime \prime }}^{2}-2 a x y^{\prime \prime }+y^{\prime } = 0 \]

11827

\[ {}2 \left (x^{2}+1\right ) {y^{\prime \prime }}^{2}-x y^{\prime \prime } \left (x +4 y^{\prime }\right )+2 \left (x +y^{\prime }\right ) y^{\prime }-2 y = 0 \]

11828

\[ {}3 x^{2} {y^{\prime \prime }}^{2}-2 \left (3 x y^{\prime }+y\right ) y^{\prime \prime }+4 {y^{\prime }}^{2} = 0 \]

11829

\[ {}x^{2} \left (2-9 x \right ) {y^{\prime \prime }}^{2}-6 x \left (1-6 x \right ) y^{\prime } y^{\prime \prime }+6 y^{\prime \prime } y-36 x {y^{\prime }}^{2} = 0 \]

11830

\[ {}F_{1,1}\left (x \right ) {y^{\prime }}^{2}+\left (\left (F_{2,1}\left (x \right )+F_{1,2}\left (x \right )\right ) y^{\prime \prime }+y \left (F_{1,0}\left (x \right )+F_{0,1}\left (x \right )\right )\right ) y^{\prime }+F_{2,2}\left (x \right ) {y^{\prime \prime }}^{2}+y \left (F_{2,0}\left (x \right )+F_{0,2}\left (x \right )\right ) y^{\prime \prime }+F_{0,0}\left (x \right ) y^{2} = 0 \]

11832

\[ {}\left (a^{2} y^{2}-b^{2}\right ) {y^{\prime \prime }}^{2}-2 a^{2} y {y^{\prime }}^{2} y^{\prime \prime }+\left (a^{2} {y^{\prime }}^{2}-1\right ) {y^{\prime }}^{2} = 0 \]

11833

\[ {}\left (y^{2}-x^{2} {y^{\prime }}^{2}+x^{2} y y^{\prime \prime }\right )^{2}-4 x y \left (x y^{\prime }-y\right )^{3} = 0 \]

11834

\[ {}\left (2 y^{\prime \prime } y-{y^{\prime }}^{2}\right )^{3}+32 y^{\prime \prime } \left (x y^{\prime \prime }-y^{\prime }\right )^{3} = 0 \]

11835

\[ {}\sqrt {a {y^{\prime \prime }}^{2}+b {y^{\prime }}^{2}}+c y y^{\prime \prime }+d {y^{\prime }}^{2} = 0 \]

11853

\[ {}y^{\prime \prime }-f \left (y\right ) = 0 \]

12993

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}-y^{\prime } y^{2} = 0 \]

12995

\[ {}2 y^{\prime \prime } = {\mathrm e}^{y} \]

12996

\[ {}y^{\prime \prime } y+2 y^{\prime }-{y^{\prime }}^{2} = 0 \]

13007

\[ {}y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }+2 \tan \left (x \right ) {y^{\prime }}^{2} = 0 \]

13008

\[ {}x^{2} y y^{\prime \prime }+\left (x y^{\prime }-y\right )^{2} = 0 \]

13009

\[ {}x^{3} y^{\prime \prime }-\left (x y^{\prime }-y\right )^{2} = 0 \]

13010

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2} = y^{2} \ln \left (y\right )-x^{2} y^{2} \]

13014

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

13017

\[ {}y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0 \]

13698

\[ {}x^{\prime \prime }+x^{4} x^{\prime }-x^{\prime }+x = 0 \]

13699

\[ {}x^{\prime \prime }+x^{\prime }+{x^{\prime }}^{3}+x = 0 \]

13700

\[ {}x^{\prime \prime }+\left (x^{4}+x^{2}\right ) x^{\prime }+x^{3}+x = 0 \]

13701

\[ {}x^{\prime \prime }+\left (5 x^{4}-6 x^{2}\right ) x^{\prime }+x^{3} = 0 \]

13702

\[ {}x^{\prime \prime }+\left (x^{2}+1\right ) x^{\prime }+x^{3} = 0 \]

13906

\[ {}y^{\prime \prime }+\frac {2 {y^{\prime }}^{2}}{1-y} = 0 \]

13917

\[ {}y^{\prime \prime } = 3 \sqrt {y} \]

13920

\[ {}y^{\prime \prime } y+{y^{\prime }}^{2} = \frac {y y^{\prime }}{\sqrt {x^{2}+1}} \]

13921

\[ {}y y^{\prime } y^{\prime \prime } = {y^{\prime }}^{3}+{y^{\prime \prime }}^{2} \]

13927

\[ {}m x^{\prime \prime } = f \left (x\right ) \]

13928

\[ {}m x^{\prime \prime } = f \left (x^{\prime }\right ) \]

13936

\[ {}x y y^{\prime \prime }-x {y^{\prime }}^{2}-y y^{\prime } = 0 \]

13940

\[ {}x y^{\prime \prime } = y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right ) \]

13942

\[ {}y^{\prime \prime } = 2 y^{3} \]

13943

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2} = y^{\prime } \]

13977

\[ {}\sinh \left (x \right ) {y^{\prime }}^{2}+y^{\prime \prime } = x y \]

13992

\[ {}y^{\prime \prime }+\frac {k x}{y^{4}} = 0 \]

14007

\[ {}\left (x \cos \left (y\right )+\sin \left (x \right )\right ) y^{\prime \prime }-x {y^{\prime }}^{2} \sin \left (y\right )+2 \left (\cos \left (y\right )+\cos \left (x \right )\right ) y^{\prime } = y \sin \left (x \right ) \]

14009

\[ {}\left (1-y\right ) y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

14226

\[ {}y^{\prime \prime } = \frac {1}{2 y^{\prime }} \]

14229

\[ {}y^{\prime \prime } = \frac {a}{y^{3}} \]

14231

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}+{y^{\prime }}^{3} = 0 \]

14234

\[ {}y^{\prime \prime } = \frac {1}{2 y^{\prime }} \]

14304

\[ {}x^{\prime \prime }+x-x^{3} = 0 \]

14305

\[ {}x^{\prime \prime }+x+x^{3} = 0 \]

14306

\[ {}x^{\prime \prime }+x^{\prime }+x-x^{3} = 0 \]

14307

\[ {}x^{\prime \prime }+x^{\prime }+x+x^{3} = 0 \]

14308

\[ {}x^{\prime \prime } = \left (2 \cos \left (x\right )-1\right ) \sin \left (x\right ) \]

14489

\[ {}2 y^{\prime \prime } y-{y^{\prime }}^{2} = 0 \]

15215

\[ {}y^{\prime \prime } = 4 x \sqrt {y^{\prime }} \]

15217

\[ {}y^{\prime \prime } y = -{y^{\prime }}^{2} \]

15218

\[ {}x y^{\prime \prime } = {y^{\prime }}^{2}-y^{\prime } \]

15220

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2} = y^{\prime } \]

15222

\[ {}\left (-3+y\right ) y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

15228

\[ {}y^{\prime \prime } y = {y^{\prime }}^{2} \]

15229

\[ {}3 y^{\prime \prime } y = 2 {y^{\prime }}^{2} \]

15230

\[ {}\sin \left (y\right ) y^{\prime \prime }+\cos \left (y\right ) {y^{\prime }}^{2} = 0 \]

15232

\[ {}y^{\prime \prime } y+{y^{\prime }}^{2} = 2 y y^{\prime } \]

15233

\[ {}y^{2} y^{\prime \prime }+y^{\prime \prime }+2 y {y^{\prime }}^{2} = 0 \]

15234

\[ {}y^{\prime \prime } = 4 x \sqrt {y^{\prime }} \]