5.20.29 Problems 2801 to 2900

Table 5.963: Second or higher order ODE with constant coefficients

#

ODE

Mathematica

Maple

16211

\[ {}y^{\prime \prime }+5 y^{\prime }+y = 0 \]

16212

\[ {}8 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

16213

\[ {}4 y^{\prime \prime }+9 y = 0 \]

16214

\[ {}y^{\prime \prime }+16 y = 0 \]

16215

\[ {}y^{\prime \prime }+8 y = 0 \]

16216

\[ {}y^{\prime \prime }+7 y = 0 \]

16217

\[ {}4 y^{\prime \prime }+21 y^{\prime }+5 y = 0 \]

16218

\[ {}7 y^{\prime \prime }+4 y^{\prime }-3 y = 0 \]

16219

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

16220

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

16221

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]

16222

\[ {}3 y^{\prime \prime }-y^{\prime } = 0 \]

16223

\[ {}y^{\prime \prime }+y^{\prime }-12 y = 0 \]

16224

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 0 \]

16225

\[ {}2 y^{\prime \prime }-7 y^{\prime }-4 y = 0 \]

16226

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

16227

\[ {}y^{\prime \prime }+36 y = 0 \]

16228

\[ {}y^{\prime \prime }+100 y = 0 \]

16229

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

16230

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

16231

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

16232

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 0 \]

16233

\[ {}y^{\prime \prime }+y^{\prime }-y = 0 \]

16234

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

16235

\[ {}y^{\prime \prime }-y^{\prime }+y = 0 \]

16236

\[ {}y^{\prime \prime }-y^{\prime }-y = 0 \]

16237

\[ {}6 y^{\prime \prime }+5 y^{\prime }+y = 0 \]

16238

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

16239

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 0 \]

16242

\[ {}a y^{\prime \prime }+2 b y^{\prime }+c y = 0 \]

16243

\[ {}y^{\prime \prime }+6 y^{\prime }+2 y = 0 \]

16244

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

16245

\[ {}y^{\prime \prime }-6 y^{\prime }-16 y = 0 \]

16246

\[ {}y^{\prime \prime }-16 y = 0 \]

16247

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

16250

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 0 \]

16251

\[ {}y^{\prime \prime }+y = 8 \,{\mathrm e}^{2 t} \]

16252

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = -{\mathrm e}^{-9 t} \]

16253

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 2 \,{\mathrm e}^{3 t} \]

16254

\[ {}y^{\prime \prime }-y = 2 t -4 \]

16255

\[ {}y^{\prime \prime }-2 y^{\prime }+y = t^{2} \]

16256

\[ {}y^{\prime \prime }+2 y^{\prime } = 3-4 t \]

16257

\[ {}y^{\prime \prime }+y = \cos \left (2 t \right ) \]

16258

\[ {}y^{\prime \prime }+4 y = 4 \cos \left (t \right )-\sin \left (t \right ) \]

16259

\[ {}y^{\prime \prime }+4 y = \cos \left (2 t \right )+t \]

16260

\[ {}y^{\prime \prime }+4 y = 3 t \,{\mathrm e}^{-t} \]

16261

\[ {}y^{\prime \prime } = 3 t^{4}-2 t \]

16262

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 2 t \,{\mathrm e}^{-2 t} \sin \left (3 t \right ) \]

16263

\[ {}y^{\prime \prime }+y^{\prime }-2 y = -1 \]

16264

\[ {}5 y^{\prime \prime }+y^{\prime }-4 y = -3 \]

16265

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 32 t \]

16266

\[ {}16 y^{\prime \prime }-8 y^{\prime }-15 y = 75 t \]

16267

\[ {}y^{\prime \prime }+2 y^{\prime }+26 y = -338 t \]

16268

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = -32 t^{2} \]

16269

\[ {}8 y^{\prime \prime }+6 y^{\prime }+y = 5 t^{2} \]

16270

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = -256 t^{3} \]

16271

\[ {}y^{\prime \prime }-2 y^{\prime } = 52 \sin \left (3 t \right ) \]

16272

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 25 \sin \left (2 t \right ) \]

16273

\[ {}y^{\prime \prime }-9 y = 54 t \sin \left (2 t \right ) \]

16274

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = -78 \cos \left (3 t \right ) \]

16275

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = -32 t^{2} \cos \left (2 t \right ) \]

16276

\[ {}y^{\prime \prime }-y^{\prime }-20 y = -2 \,{\mathrm e}^{t} \]

16277

\[ {}y^{\prime \prime }-4 y^{\prime }-5 y = -648 t^{2} {\mathrm e}^{5 t} \]

16278

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = -2 t^{3} {\mathrm e}^{4 t} \]

16279

\[ {}y^{\prime \prime }+4 y^{\prime } = 8 \,{\mathrm e}^{4 t}-4 \,{\mathrm e}^{-4 t} \]

16280

\[ {}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t} \]

16281

\[ {}y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \]

16282

\[ {}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t} \]

16283

\[ {}y^{\prime \prime } = t^{2}+{\mathrm e}^{t}+\sin \left (t \right ) \]

16284

\[ {}y^{\prime \prime }+3 y^{\prime } = 18 \]

16285

\[ {}y^{\prime \prime }-y = 4 \]

16286

\[ {}y^{\prime \prime }-4 y = 32 t \]

16287

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = -2 \]

16288

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 3 t \]

16289

\[ {}y^{\prime \prime }+8 y^{\prime }+16 y = 4 \]

16290

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = t \,{\mathrm e}^{-t} \]

16291

\[ {}y^{\prime \prime }+6 y^{\prime }+25 y = -1 \]

16292

\[ {}y^{\prime \prime }-3 y^{\prime } = -{\mathrm e}^{3 t}-2 t \]

16293

\[ {}y^{\prime \prime }-y^{\prime } = -3 t -4 t^{2} {\mathrm e}^{2 t} \]

16294

\[ {}y^{\prime \prime }-2 y^{\prime } = 2 t^{2} \]

16295

\[ {}y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \]

16296

\[ {}y^{\prime \prime }-3 y^{\prime } = {\mathrm e}^{-3 t}-{\mathrm e}^{3 t} \]

16297

\[ {}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

16298

\[ {}y^{\prime \prime }+9 \pi ^{2} y = \left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ -2 \pi +2 t & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]

16299

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 10 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]

16305

\[ {}y^{\prime \prime }+y^{\prime }-2 y = f \left (t \right ) \]

16306

\[ {}x^{\prime \prime }+9 x = \sin \left (3 t \right ) \]

16307

\[ {}4 y^{\prime \prime }+4 y^{\prime }+37 y = \cos \left (3 t \right ) \]

16308

\[ {}y^{\prime \prime }+4 y = 1 \]

16309

\[ {}y^{\prime \prime }+16 y^{\prime } = t \]

16310

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = {\mathrm e}^{3 t} \]

16311

\[ {}y^{\prime \prime }+16 y = 2 \cos \left (4 t \right ) \]

16312

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 2 t \,{\mathrm e}^{-2 t} \]

16313

\[ {}y^{\prime \prime }+\frac {y}{4} = \sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right ) \]

16314

\[ {}y^{\prime \prime }+16 y = \csc \left (4 t \right ) \]

16315

\[ {}y^{\prime \prime }+16 y = \cot \left (4 t \right ) \]

16316

\[ {}y^{\prime \prime }+2 y^{\prime }+50 y = {\mathrm e}^{-t} \csc \left (7 t \right ) \]

16317

\[ {}y^{\prime \prime }+6 y^{\prime }+25 y = {\mathrm e}^{-3 t} \left (\sec \left (4 t \right )+\csc \left (4 t \right )\right ) \]

16318

\[ {}y^{\prime \prime }-2 y^{\prime }+26 y = {\mathrm e}^{t} \left (\sec \left (5 t \right )+\csc \left (5 t \right )\right ) \]

16319

\[ {}y^{\prime \prime }+12 y^{\prime }+37 y = {\mathrm e}^{-6 t} \csc \left (t \right ) \]