5.20.28 Problems 2701 to 2800

Table 5.961: Second or higher order ODE with constant coefficients

#

ODE

Mathematica

Maple

15570

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 3 x \,{\mathrm e}^{6 x}-2 \,{\mathrm e}^{6 x} \]

15571

\[ {}y^{\prime \prime }+36 y = 6 \sec \left (6 x \right ) \]

15573

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 10 \,{\mathrm e}^{-3 x} \]

15575

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 2 \cos \left (2 x \right ) \]

15579

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = x \,{\mathrm e}^{\frac {3 x}{2}} \]

15580

\[ {}3 y^{\prime \prime }+8 y^{\prime }-3 y = 123 x \sin \left (3 x \right ) \]

15581

\[ {}y^{\prime \prime \prime }+8 y = {\mathrm e}^{-2 x} \]

15582

\[ {}y^{\left (6\right )}-64 y = {\mathrm e}^{-2 x} \]

15588

\[ {}y^{\prime \prime }-4 y = t^{3} \]

15589

\[ {}y^{\prime \prime }+4 y = 20 \,{\mathrm e}^{4 t} \]

15590

\[ {}y^{\prime \prime }+4 y = \sin \left (2 t \right ) \]

15591

\[ {}y^{\prime \prime }+4 y = 3 \operatorname {Heaviside}\left (t -2\right ) \]

15592

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{4 t} \]

15593

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = t^{2} {\mathrm e}^{4 t} \]

15594

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 7 \]

15595

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = {\mathrm e}^{2 t} \sin \left (3 t \right ) \]

15596

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 4 t +2 \,{\mathrm e}^{2 t} \sin \left (3 t \right ) \]

15597

\[ {}y^{\prime \prime \prime }-27 y = {\mathrm e}^{-3 t} \]

15599

\[ {}y^{\prime \prime }-9 y = 0 \]

15600

\[ {}y^{\prime \prime }+9 y = 27 t^{3} \]

15601

\[ {}y^{\prime \prime }+8 y^{\prime }+7 y = 165 \,{\mathrm e}^{4 t} \]

15602

\[ {}y^{\prime \prime }-8 y^{\prime }+17 y = 0 \]

15603

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 t} t^{2} \]

15604

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]

15605

\[ {}y^{\prime \prime }+8 y^{\prime }+17 y = 0 \]

15606

\[ {}y^{\prime \prime } = {\mathrm e}^{t} \sin \left (t \right ) \]

15607

\[ {}y^{\prime \prime }-4 y^{\prime }+40 y = 122 \,{\mathrm e}^{-3 t} \]

15608

\[ {}y^{\prime \prime }-9 y = 24 \,{\mathrm e}^{-3 t} \]

15609

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = {\mathrm e}^{2 t} \sin \left (3 t \right ) \]

15610

\[ {}y^{\prime \prime }+4 y = 1 \]

15611

\[ {}y^{\prime \prime }+4 y = t \]

15612

\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{3 t} \]

15613

\[ {}y^{\prime \prime }+4 y = \sin \left (2 t \right ) \]

15614

\[ {}y^{\prime \prime }+4 y = \sin \left (t \right ) \]

15615

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 1 \]

15616

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = t \]

15617

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 t} \]

15618

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{-3 t} \]

15619

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{t} \]

15622

\[ {}y^{\prime \prime } = \operatorname {Heaviside}\left (t -2\right ) \]

15623

\[ {}y^{\prime \prime } = \operatorname {Heaviside}\left (t -2\right ) \]

15624

\[ {}y^{\prime \prime }+9 y = \operatorname {Heaviside}\left (t -10\right ) \]

15626

\[ {}y^{\prime \prime } = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \]

15627

\[ {}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \]

15630

\[ {}y^{\prime \prime } = \delta \left (t -3\right ) \]

15631

\[ {}y^{\prime \prime } = \delta \left (t -1\right )-\delta \left (t -4\right ) \]

15633

\[ {}y^{\prime \prime }+y = \delta \left (t \right )+\delta \left (t -\pi \right ) \]

15634

\[ {}y^{\prime \prime }+y = -2 \delta \left (t -\frac {\pi }{2}\right ) \]

15636

\[ {}y^{\prime \prime }+3 y^{\prime } = \delta \left (t \right ) \]

15637

\[ {}y^{\prime \prime }+3 y^{\prime } = \delta \left (t -1\right ) \]

15638

\[ {}y^{\prime \prime }+16 y = \delta \left (t -2\right ) \]

15639

\[ {}y^{\prime \prime }-16 y = \delta \left (t -10\right ) \]

15640

\[ {}y^{\prime \prime }+y = \delta \left (t \right ) \]

15641

\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = \delta \left (t \right ) \]

15642

\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = \delta \left (t -3\right ) \]

15643

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \delta \left (t -4\right ) \]

15644

\[ {}y^{\prime \prime }-12 y^{\prime }+45 y = \delta \left (t \right ) \]

15645

\[ {}y^{\prime \prime \prime }+9 y^{\prime } = \delta \left (t -1\right ) \]

15646

\[ {}y^{\prime \prime \prime \prime }-16 y = \delta \left (t \right ) \]

15781

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x^{3} \]

15783

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+5 y^{\prime }+y = {\mathrm e}^{x} \]

15793

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

15794

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

15795

\[ {}x^{\prime \prime }+2 x^{\prime }-10 x = 0 \]

15796

\[ {}x^{\prime \prime }+x = \cos \left (t \right ) t -\cos \left (t \right ) \]

15797

\[ {}y^{\prime \prime }-12 y^{\prime }+40 y = 0 \]

15798

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime } = 0 \]

15799

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]

15822

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

15823

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

15824

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]

15825

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = 0 \]

15835

\[ {}16 y^{\prime \prime }+24 y^{\prime }+153 y = 0 \]

15839

\[ {}y^{\prime \prime \prime \prime }+\frac {25 y^{\prime \prime }}{2}-5 y^{\prime }+\frac {629 y}{16} = 0 \]

15844

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

15845

\[ {}y^{\prime \prime }-6 y^{\prime }+45 y = 0 \]

15848

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = x \]

15849

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 2 \]

15857

\[ {}y^{\prime \prime }+4 y = t \]

16177

\[ {}y^{\prime \prime }-y = 0 \]

16178

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

16180

\[ {}y^{\prime \prime }+9 y = 0 \]

16181

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

16182

\[ {}y^{\prime \prime }+9 y = 0 \]

16185

\[ {}y^{\prime \prime }+y = 2 \cos \left (t \right ) \]

16186

\[ {}y^{\prime \prime }+10 y^{\prime }+24 y = 0 \]

16187

\[ {}y^{\prime \prime }+16 y = 0 \]

16188

\[ {}y^{\prime \prime }+6 y^{\prime }+18 y = 0 \]

16190

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

16191

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 0 \]

16192

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

16193

\[ {}y^{\prime \prime }+10 y^{\prime }+25 y = 0 \]

16194

\[ {}y^{\prime \prime }+9 y = 0 \]

16195

\[ {}y^{\prime \prime }+49 y = 0 \]

16200

\[ {}a y^{\prime \prime }+b y^{\prime }+c y = 0 \]

16206

\[ {}y^{\prime \prime } = 0 \]

16207

\[ {}y^{\prime \prime }-4 y^{\prime }-12 y = 0 \]

16208

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

16209

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

16210

\[ {}y^{\prime \prime }+8 y^{\prime }+12 y = 0 \]