5.20.33 Problems 3201 to 3300

Table 5.971: Second or higher order ODE with constant coefficients

#

ODE

Mathematica

Maple

17066

\[ {}y^{\prime \prime }+y^{\prime } = \cos \left (x \right )^{2}+{\mathrm e}^{x}+x^{2} \]

17067

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime } = {\mathrm e}^{x}+3 \sin \left (2 x \right )+1 \]

17068

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 10 \sin \left (x \right )+17 \sin \left (2 x \right ) \]

17069

\[ {}y^{\prime \prime }+y^{\prime } = x^{2}-{\mathrm e}^{-x}+{\mathrm e}^{x} \]

17070

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 2 x +{\mathrm e}^{-x}-2 \,{\mathrm e}^{3 x} \]

17071

\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{x}+4 \sin \left (2 x \right )+2 \cos \left (x \right )^{2}-1 \]

17072

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 6 x \,{\mathrm e}^{-x} \left (1-{\mathrm e}^{-x}\right ) \]

17073

\[ {}y^{\prime \prime }+y = \cos \left (2 x \right )^{2}+\sin \left (\frac {x}{2}\right )^{2} \]

17074

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 1+8 \cos \left (x \right )+{\mathrm e}^{2 x} \]

17075

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (\frac {x}{2}\right )^{2} \]

17076

\[ {}y^{\prime \prime }-3 y^{\prime } = 1+{\mathrm e}^{x}+\cos \left (x \right )+\sin \left (x \right ) \]

17077

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{x} \left (1-2 \sin \left (x \right )^{2}\right )+10 x +1 \]

17078

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 4 x +\sin \left (x \right )+\sin \left (2 x \right ) \]

17079

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 1+2 \cos \left (x \right )+\cos \left (2 x \right )-\sin \left (2 x \right ) \]

17080

\[ {}y^{\prime \prime }+y^{\prime }+y+1 = \sin \left (x \right )+x +x^{2} \]

17081

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 18 \,{\mathrm e}^{-3 x}+8 \sin \left (x \right )+6 \cos \left (x \right ) \]

17082

\[ {}y^{\prime \prime }+2 y^{\prime }+1 = 3 \sin \left (2 x \right )+\cos \left (x \right ) \]

17083

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x}+2 x \]

17084

\[ {}y^{\prime \prime }+y = 2 \sin \left (x \right ) \sin \left (2 x \right ) \]

17085

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = 4 x +3 \sin \left (x \right )+\cos \left (x \right ) \]

17086

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = {\mathrm e}^{2 x} x +\sin \left (x \right )+x^{2} \]

17087

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime } = x \,{\mathrm e}^{x}-1 \]

17088

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime } = x +2 \,{\mathrm e}^{-x} \]

17089

\[ {}y^{\prime \prime }+y = -2 x +2 \]

17090

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 9 x^{2}-12 x +2 \]

17091

\[ {}y^{\prime \prime }+9 y = 36 \,{\mathrm e}^{3 x} \]

17092

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 2 \,{\mathrm e}^{2 x} \]

17093

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = \left (12 x -7\right ) {\mathrm e}^{-x} \]

17094

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{-x} \]

17095

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 10 \sin \left (x \right ) \]

17096

\[ {}y^{\prime \prime }+y = 2 \cos \left (x \right ) \]

17097

\[ {}y^{\prime \prime }+4 y = \sin \left (x \right ) \]

17098

\[ {}y^{\prime \prime }+y = 4 x \cos \left (x \right ) \]

17099

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 2 \,{\mathrm e}^{x} x^{2} \]

17100

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 16 \,{\mathrm e}^{-x}+9 x -6 \]

17101

\[ {}y^{\prime \prime }-y^{\prime } = -5 \,{\mathrm e}^{-x} \left (\cos \left (x \right )+\sin \left (x \right )\right ) \]

17102

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 4 \,{\mathrm e}^{x} \cos \left (x \right ) \]

17103

\[ {}y^{\prime \prime \prime }-y^{\prime } = -2 x \]

17104

\[ {}y^{\prime \prime \prime \prime }-y = 8 \,{\mathrm e}^{x} \]

17105

\[ {}y^{\prime \prime \prime }-y = 2 x \]

17106

\[ {}y^{\prime \prime \prime \prime }-y = 8 \,{\mathrm e}^{x} \]

17107

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = \sin \left (x \right ) \]

17108

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \cos \left (2 x \right )+\sin \left (2 x \right ) \]

17109

\[ {}y^{\prime \prime }-y = 1 \]

17110

\[ {}y^{\prime \prime }-y = -2 \cos \left (x \right ) \]

17111

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \,{\mathrm e}^{-x} \]

17112

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 8 \,{\mathrm e}^{x}+9 \]

17113

\[ {}y^{\prime \prime }-y^{\prime }-5 y = 1 \]

17114

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 2 \,{\mathrm e}^{x} \left (\sin \left (x \right )+7 \cos \left (x \right )\right ) \]

17115

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{-2 x} \left (9 \sin \left (2 x \right )+4 \cos \left (2 x \right )\right ) \]

17116

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{-x} \left (9 x^{2}+5 x -12\right ) \]

17148

\[ {}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )} \]

17149

\[ {}y^{\prime \prime }+y^{\prime } = \frac {1}{1+{\mathrm e}^{x}} \]

17150

\[ {}y^{\prime \prime }+y = \frac {1}{\cos \left (x \right )^{3}} \]

17151

\[ {}y^{\prime \prime }+y = \frac {1}{\sqrt {\sin \left (x \right )^{5} \cos \left (x \right )}} \]

17152

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x^{2}+1} \]

17153

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \frac {{\mathrm e}^{-x}}{\sin \left (x \right )} \]

17154

\[ {}y^{\prime \prime }+y = \frac {2}{\sin \left (x \right )^{3}} \]

17155

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x} \cos \left ({\mathrm e}^{x}\right ) \]

17156

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = \frac {x -1}{x^{3}} \]

17170

\[ {}x^{\prime \prime }+x^{\prime }+x = 0 \]

17171

\[ {}x^{\prime \prime }+2 x^{\prime }+6 x = 0 \]

17172

\[ {}x^{\prime \prime }+2 x^{\prime }+x = 0 \]

17180

\[ {}y^{\prime \prime }+\lambda y = 0 \]

17181

\[ {}y^{\prime \prime }+\lambda y = 0 \]

17182

\[ {}y^{\prime \prime }-y = 0 \]

17183

\[ {}y^{\prime \prime }+y = 0 \]

17185

\[ {}y^{\prime \prime }+y = 0 \]

17186

\[ {}y^{\prime \prime }-y = 0 \]

17187

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

17188

\[ {}y^{\prime \prime }+\alpha y^{\prime } = 0 \]

17189

\[ {}y^{\prime \prime }+\alpha ^{2} y = 1 \]

17190

\[ {}y^{\prime \prime }+y = 1 \]

17191

\[ {}y^{\prime \prime }+\lambda ^{2} y = 0 \]

17192

\[ {}y^{\prime \prime }+\lambda ^{2} y = 0 \]

17193

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]

17194

\[ {}y^{\prime \prime \prime \prime }-\lambda ^{4} y = 0 \]

17224

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right )^{2} \]

17225

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \pi ^{2}-x^{2} \]

17226

\[ {}y^{\prime \prime }-4 y = \cos \left (\pi x \right ) \]

17227

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \arcsin \left (\sin \left (x \right )\right ) \]

17228

\[ {}y^{\prime \prime }+9 y = \sin \left (x \right )^{3} \]

17288

\[ {}x^{\prime \prime } = 0 \]

17289

\[ {}x^{\prime \prime } = 1 \]

17290

\[ {}x^{\prime \prime } = \cos \left (t \right ) \]

17291

\[ {}x^{\prime \prime }+x^{\prime } = 0 \]

17292

\[ {}x^{\prime \prime }+x^{\prime } = 0 \]

17293

\[ {}x^{\prime \prime }-x^{\prime } = 1 \]

17294

\[ {}x^{\prime \prime }+x = t \]

17295

\[ {}x^{\prime \prime }+6 x^{\prime } = 12 t +2 \]

17296

\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = 2 \]

17297

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = 4 \]

17298

\[ {}2 x^{\prime \prime }-2 x^{\prime } = \left (t +1\right ) {\mathrm e}^{t} \]

17299

\[ {}x^{\prime \prime }+x = 2 \cos \left (t \right ) \]

17552

\[ {}y^{\prime \prime }+y = 0 \]

17553

\[ {}y^{\prime \prime }+9 y = 0 \]

17554

\[ {}y^{\prime \prime }+y^{\prime }+16 y = 0 \]

17555

\[ {}y^{\prime \prime }+3 y^{\prime }+4 y = 0 \]

17556

\[ {}y^{\prime \prime }-y^{\prime }+4 y = 0 \]

17567

\[ {}y^{\prime \prime }+4 y = 0 \]