5.23.4 Problems 301 to 400

Table 5.1009: Higher order, Linear, non-homogeneous and constant coefficients

#

ODE

Mathematica

Maple

14083

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 8 \,{\mathrm e}^{2 t}-5 \,{\mathrm e}^{t} \]

14084

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = -t^{2}+2 t -10 \]

14085

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 12 \operatorname {Heaviside}\left (t \right )-12 \operatorname {Heaviside}\left (t -1\right ) \]

14086

\[ {}y^{\prime \prime \prime \prime }-16 y = 32 \operatorname {Heaviside}\left (t \right )-32 \operatorname {Heaviside}\left (t -\pi \right ) \]

14095

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 5 \]

14097

\[ {}y^{\prime \prime \prime } = 2 y^{\prime \prime }-4 y^{\prime }+\sin \left (t \right ) \]

14264

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = 2 x +3 \]

14265

\[ {}y^{\prime \prime \prime \prime }-a^{4} y = 5 a^{4} {\mathrm e}^{a x} \sin \left (a x \right ) \]

14266

\[ {}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 8 \cos \left (a x \right ) \]

14510

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-12 y^{\prime }+4 y = 2 \,{\mathrm e}^{x}-4 \,{\mathrm e}^{2 x} \]

14511

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 24 x^{2}-6 x +14+32 \cos \left (2 x \right ) \]

14512

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3+\cos \left (2 x \right ) \]

14513

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = 6 x -20-120 \,{\mathrm e}^{x} x^{2} \]

14514

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+21 y^{\prime }-26 y = 36 \,{\mathrm e}^{2 x} \sin \left (3 x \right ) \]

14515

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = \left (2 x^{2}+4 x +8\right ) \cos \left (x \right )+\left (6 x^{2}+8 x +12\right ) \sin \left (x \right ) \]

14516

\[ {}y^{\left (6\right )}-12 y^{\left (5\right )}+63 y^{\prime \prime \prime \prime }-18 y^{\prime \prime \prime }+315 y^{\prime \prime }-300 y^{\prime }+125 y = {\mathrm e}^{x} \left (48 \cos \left (x \right )+96 \sin \left (x \right )\right ) \]

14519

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 2 \,{\mathrm e}^{x} \]

14520

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3 x +4 \]

14527

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x \,{\mathrm e}^{x}-3 x^{2} \]

14534

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x +\cos \left (x \right ) \]

15000

\[ {}y^{\prime \prime \prime \prime } = 1 \]

15270

\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime }-83 y-25 = 0 \]

15293

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = {\mathrm e}^{3 x} \sin \left (x \right ) \]

15420

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = 1 \]

15487

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 12 \,{\mathrm e}^{-2 x} \]

15488

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 10 \sin \left (2 x \right ) \]

15489

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 32 \,{\mathrm e}^{4 x} \]

15490

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 32 x \]

15491

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = x^{2} \]

15492

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 30 \cos \left (2 x \right ) \]

15493

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 6 \,{\mathrm e}^{x} \]

15494

\[ {}y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = x^{2} {\mathrm e}^{3 x} \]

15495

\[ {}y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = x^{2} \sin \left (3 x \right ) \]

15496

\[ {}y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = x^{2} {\mathrm e}^{3 x} \sin \left (3 x \right ) \]

15497

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 30 x \cos \left (2 x \right ) \]

15498

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 3 x \cos \left (x \right ) \]

15499

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 3 x \,{\mathrm e}^{x} \cos \left (x \right ) \]

15500

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 5 x^{5} {\mathrm e}^{2 x} \]

15529

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = 30 \,{\mathrm e}^{3 x} \]

15532

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = \tan \left (x \right ) \]

15533

\[ {}y^{\prime \prime \prime \prime }-81 y = \sinh \left (x \right ) \]

15557

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime } = 8 \]

15581

\[ {}y^{\prime \prime \prime }+8 y = {\mathrm e}^{-2 x} \]

15582

\[ {}y^{\left (6\right )}-64 y = {\mathrm e}^{-2 x} \]

15597

\[ {}y^{\prime \prime \prime }-27 y = {\mathrm e}^{-3 t} \]

15645

\[ {}y^{\prime \prime \prime }+9 y^{\prime } = \delta \left (t -1\right ) \]

15646

\[ {}y^{\prime \prime \prime \prime }-16 y = \delta \left (t \right ) \]

15783

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+5 y^{\prime }+y = {\mathrm e}^{x} \]

16406

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{t} \]

16407

\[ {}y^{\prime \prime \prime \prime }-16 y = 1 \]

16408

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime } = 1 \]

16409

\[ {}y^{\prime \prime \prime \prime }+9 y^{\prime \prime } = 1 \]

16410

\[ {}y^{\prime \prime \prime \prime }+9 y^{\prime \prime } = 9 \,{\mathrm e}^{3 t} \]

16411

\[ {}y^{\prime \prime \prime }+10 y^{\prime \prime }+34 y^{\prime }+40 y = t \,{\mathrm e}^{-4 t}+2 \,{\mathrm e}^{-3 t} \cos \left (t \right ) \]

16412

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 2 \,{\mathrm e}^{-3 t}-t \,{\mathrm e}^{-t} \]

16413

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-24 y^{\prime }+36 y = 108 t \]

16414

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }-14 y^{\prime }-104 y = -111 \,{\mathrm e}^{t} \]

16415

\[ {}y^{\prime \prime \prime \prime }-10 y^{\prime \prime \prime }+38 y^{\prime \prime }-64 y^{\prime }+40 y = 153 \,{\mathrm e}^{-t} \]

16416

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = \tan \left (2 t \right ) \]

16417

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = \sec \left (2 t \right ) \tan \left (2 t \right ) \]

16418

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = \sec \left (2 t \right )^{2} \]

16419

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = \tan \left (2 t \right )^{2} \]

16420

\[ {}y^{\prime \prime \prime }+9 y^{\prime } = \sec \left (3 t \right ) \]

16421

\[ {}y^{\prime \prime \prime }+y^{\prime } = -\sec \left (t \right ) \tan \left (t \right ) \]

16422

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = \sec \left (2 t \right ) \]

16423

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime } = -\frac {1}{t^{2}}-\frac {2}{t} \]

16424

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = \frac {{\mathrm e}^{t}}{t} \]

16425

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }-11 y^{\prime }+30 y = {\mathrm e}^{4 t} \]

16426

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-10 y^{\prime }-24 y = {\mathrm e}^{-3 t} \]

16427

\[ {}y^{\prime \prime \prime }-13 y^{\prime }+12 y = \cos \left (t \right ) \]

16428

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = \cos \left (t \right ) \]

16429

\[ {}y^{\left (6\right )}+y^{\prime \prime \prime \prime } = -24 \]

16430

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = \tan \left (t \right )^{2} \]

16431

\[ {}y^{\prime \prime \prime }-y^{\prime \prime } = 3 t^{2} \]

16432

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = \sec \left (t \right )^{2} \]

16433

\[ {}y^{\prime \prime \prime }+y^{\prime } = \sec \left (t \right ) \]

16434

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = \cos \left (t \right ) \]

16435

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = t \]

16585

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-9 y^{\prime }+5 y = {\mathrm e}^{t} \]

16586

\[ {}y^{\prime \prime \prime }-12 y^{\prime }-16 y = {\mathrm e}^{4 t}-{\mathrm e}^{-2 t} \]

16587

\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+18 y^{\prime \prime }+30 y^{\prime }+25 y = {\mathrm e}^{-t} \cos \left (2 t \right )+{\mathrm e}^{-2 t} \sin \left (t \right ) \]

16588

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+14 y^{\prime \prime }+20 y^{\prime }+25 y = t^{2} \]

16915

\[ {}y^{\prime \prime \prime \prime } = x \]

16916

\[ {}y^{\prime \prime \prime } = x +\cos \left (x \right ) \]

16990

\[ {}y^{\prime \prime \prime }+y = x \]

16991

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 1 \]

16992

\[ {}y^{\prime \prime \prime }+y^{\prime } = 2 \]

16993

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = 3 \]

16994

\[ {}y^{\prime \prime \prime \prime }-y = 1 \]

16995

\[ {}y^{\prime \prime \prime \prime }-y^{\prime } = 2 \]

16996

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime } = 3 \]

16997

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime } = 4 \]

16998

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+4 y^{\prime \prime } = 1 \]

16999

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{4 x} \]

17000

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{-x} \]

17001

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = x \,{\mathrm e}^{-x} \]

17002

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \sin \left (2 x \right ) \]

17003

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \cos \left (x \right ) \]

17004

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \sin \left (2 x \right ) x \]

17005

\[ {}y^{\prime \prime \prime \prime }+2 n^{2} y^{\prime \prime }+n^{4} y = a \sin \left (n x +\alpha \right ) \]