5.24.5 Problems 401 to 500

Table 5.1023: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

5995

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]

5996

\[ {}y^{3} y^{\prime \prime } = k \]

5997

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2}-1 \]

5998

\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 1 \]

5999

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} \]

6000

\[ {}\left (1+y\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

6001

\[ {}r^{\prime \prime } = -\frac {k}{r^{2}} \]

6002

\[ {}y^{\prime \prime } = \frac {3 k y^{2}}{2} \]

6003

\[ {}y^{\prime \prime } = 2 k y^{3} \]

6004

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}-y^{\prime } = 0 \]

6005

\[ {}r^{\prime \prime } = \frac {h^{2}}{r^{3}}-\frac {k}{r^{2}} \]

6006

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3}-{y^{\prime }}^{2} = 0 \]

6007

\[ {}y y^{\prime \prime }-3 {y^{\prime }}^{2} = 0 \]

6008

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

6009

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (y^{\prime }+1\right ) = 0 \]

6010

\[ {}\left (1+y\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

6011

\[ {}y^{\prime \prime } = y^{\prime } {\mathrm e}^{y} \]

6012

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]

6013

\[ {}2 y^{\prime \prime } = {\mathrm e}^{y} \]

6014

\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 1 \]

6015

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} \]

6016

\[ {}x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+y y^{\prime } = 0 \]

6017

\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2}-y y^{\prime } = 0 \]

6018

\[ {}x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+\left (1+y\right ) y^{\prime } = 0 \]

6026

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

6030

\[ {}\left (1+{y^{\prime }}^{2}\right )^{3} = a^{2} {y^{\prime \prime }}^{2} \]

6076

\[ {}u^{\prime \prime }-\frac {a^{2} u}{x^{{2}/{3}}} = 0 \]

6077

\[ {}u^{\prime \prime }-\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

6078

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

6079

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}+a^{2} u = 0 \]

6080

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}-a^{2} u = 0 \]

6081

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}+a^{2} u = 0 \]

6082

\[ {}y^{\prime \prime }-a^{2} y = \frac {6 y}{x^{2}} \]

6083

\[ {}y^{\prime \prime }+n^{2} y = \frac {6 y}{x^{2}} \]

6084

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-\left (x^{2}+\frac {1}{4}\right ) y = 0 \]

6085

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\frac {\left (-9 a^{2}+4 x^{2}\right ) y}{4 a^{2}} = 0 \]

6086

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {25}{4}\right ) y = 0 \]

6087

\[ {}y^{\prime \prime }+q y^{\prime } = \frac {2 y}{x^{2}} \]

6088

\[ {}y^{\prime \prime }+y \,{\mathrm e}^{2 x} = n^{2} y \]

6089

\[ {}y^{\prime \prime }+\frac {y}{4 x} = 0 \]

6090

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

6091

\[ {}x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \]

6183

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

6184

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

6185

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

6186

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

6187

\[ {}y^{\prime \prime }+2 x y^{\prime } = 0 \]

6188

\[ {}2 y y^{\prime \prime } = {y^{\prime }}^{2} \]

6189

\[ {}x y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \]

6190

\[ {}{y^{\prime \prime }}^{2} = k^{2} \left (1+{y^{\prime }}^{2}\right ) \]

6191

\[ {}k = \frac {y^{\prime \prime }}{\left (y^{\prime }+1\right )^{{3}/{2}}} \]

6192

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }-3 y = 0 \]

6193

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

6194

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0 \]

6195

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+6 y = 0 \]

6196

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-16 y = 8 x^{4} \]

6197

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x -\frac {1}{x} \]

6198

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 2 x^{3} \]

6199

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 6 \ln \left (x \right ) x^{2} \]

6200

\[ {}x^{2} y^{\prime \prime }+y = 3 x^{2} \]

6201

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 2 x \]

6202

\[ {}x^{2} \left (2-x \right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

6203

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

6204

\[ {}x y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+\left (x +2\right ) y = 0 \]

6205

\[ {}3 x y^{\prime \prime }-2 \left (3 x -1\right ) y^{\prime }+\left (3 x -2\right ) y = 0 \]

6206

\[ {}x^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }-y = 0 \]

6207

\[ {}x \left (1+x \right ) y^{\prime \prime }-\left (x -1\right ) y^{\prime }+y = 0 \]

6215

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = x \]

6219

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

6231

\[ {}x \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right ) = y y^{\prime } \]

6235

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}+4 = 0 \]

6249

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 0 \]

6251

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = 0 \]

6253

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

6255

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0 \]

6407

\[ {}x \left (1+x \right )^{2} y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

6408

\[ {}x \left (1-x \right ) y^{\prime \prime }+2 \left (1-2 x \right ) y^{\prime }-2 y = 0 \]

6409

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

6410

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+2 y = 0 \]

6411

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

6412

\[ {}2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]

6413

\[ {}x y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

6414

\[ {}x \left (x -1\right )^{2} y^{\prime \prime }-2 y = 0 \]

6417

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+m y = 0 \]

6532

\[ {}t^{2} N^{\prime \prime }-2 t N^{\prime }+2 N = t \ln \left (t \right ) \]

6540

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = \ln \left (x \right ) \]

6541

\[ {}x^{2} y^{\prime \prime }-x y^{\prime } = {\mathrm e}^{x} x^{3} \]

6574

\[ {}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

6695

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

6696

\[ {}x^{3} y^{\prime \prime \prime }+x y^{\prime }-y = 3 x^{4} \]

6697

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

6698

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

6699

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 2 \]

6700

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

6749

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x +\ln \left (x \right ) x^{2} \]

6750

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = \ln \left (x \right )^{2}-\ln \left (x^{2}\right ) \]

6751

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime } = x +\sin \left (\ln \left (x \right )\right ) \]

6752

\[ {}x^{3} y^{\prime \prime \prime }+x y^{\prime }-y = 3 x^{4} \]

6753

\[ {}\left (1+x \right )^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }-y = \ln \left (1+x \right )^{2}+x -1 \]

6754

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }-12 y = 6 x \]