5.24.6 Problems 501 to 600

Table 5.1025: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

6755

\[ {}x y^{\prime \prime }-\left (x +2\right ) y^{\prime }+2 y = 0 \]

6756

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 2 \]

6757

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 8 \]

6758

\[ {}\left (1+x \right ) y^{\prime \prime }-\left (2 x +3\right ) y^{\prime }+\left (x +2\right ) y = \left (x^{2}+2 x +1\right ) {\mathrm e}^{2 x} \]

6759

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }-10 y = 0 \]

6760

\[ {}x^{2} y^{\prime \prime }-x \left (2 x +3\right ) y^{\prime }+\left (x^{2}+3 x +3\right ) y = \left (-x^{2}+6\right ) {\mathrm e}^{x} \]

6761

\[ {}4 x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (x^{2}+1\right )^{2} y = 0 \]

6762

\[ {}x^{2} y^{\prime \prime }+\left (-4 x^{2}+x \right ) y^{\prime }+\left (4 x^{2}-2 x +1\right ) y = \left (x^{2}-x +1\right ) {\mathrm e}^{x} \]

6763

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

6764

\[ {}x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+y = \frac {1+x}{x} \]

6765

\[ {}x^{8} y^{\prime \prime }+4 x^{7} y^{\prime }+y = \frac {1}{x^{3}} \]

6766

\[ {}\left (x \sin \left (x \right )+\cos \left (x \right )\right ) y^{\prime \prime }-x \cos \left (x \right ) y^{\prime }+y \cos \left (x \right ) = x \]

6767

\[ {}x y^{\prime \prime }-3 y^{\prime }+\frac {3 y}{x} = x +2 \]

6768

\[ {}\left (1+x \right ) y^{\prime \prime }-\left (3 x +4\right ) y^{\prime }+3 y = \left (3 x +2\right ) {\mathrm e}^{3 x} \]

6769

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (9 x^{2}+6\right ) y = 0 \]

6770

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 x y = 4 \]

6771

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = \frac {-x^{2}+1}{x} \]

6772

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

6773

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime } = \frac {2}{x^{3}} \]

6774

\[ {}x y^{\prime \prime }-y^{\prime } = -\frac {2}{x}-\ln \left (x \right ) \]

6776

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

6777

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

6778

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \cos \left (y\right )+y y^{\prime } \sin \left (y\right )\right ) \]

6779

\[ {}\left (2 x -3\right ) y^{\prime \prime \prime }-\left (6 x -7\right ) y^{\prime \prime }+4 x y^{\prime }-4 y = 8 \]

6780

\[ {}\left (2 x^{3}-1\right ) y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+6 x y^{\prime } = 0 \]

6781

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} \ln \left (y\right ) \]

6782

\[ {}\left (x +2 y\right ) y^{\prime \prime }+2 {y^{\prime }}^{2}+2 y^{\prime } = 2 \]

6783

\[ {}\left (1+2 y+3 y^{2}\right ) y^{\prime \prime \prime }+6 y^{\prime } \left (y^{\prime \prime }+{y^{\prime }}^{2}+3 y y^{\prime \prime }\right ) = x \]

6784

\[ {}3 x \left (y^{2} y^{\prime \prime \prime }+6 y y^{\prime } y^{\prime \prime }+2 {y^{\prime }}^{3}\right )-3 y \left (y y^{\prime \prime }+2 {y^{\prime }}^{2}\right ) = -\frac {2}{x} \]

6785

\[ {}y y^{\prime \prime \prime }+3 y^{\prime } y^{\prime \prime }-2 y y^{\prime \prime }-2 {y^{\prime }}^{2}+y y^{\prime } = {\mathrm e}^{2 x} \]

6786

\[ {}2 \left (1+y\right ) y^{\prime \prime }+2 {y^{\prime }}^{2}+y^{2}+2 y = 0 \]

6876

\[ {}\left (1-x \right ) y^{\prime \prime }-4 x y^{\prime }+5 y = \cos \left (x \right ) \]

6877

\[ {}x y^{\prime \prime \prime }-{y^{\prime }}^{4}+y = 0 \]

6878

\[ {}t^{5} y^{\prime \prime \prime \prime }-t^{3} y^{\prime \prime }+6 y = 0 \]

6879

\[ {}u^{\prime \prime }+u^{\prime }+u = \cos \left (r +u\right ) \]

6880

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

6881

\[ {}R^{\prime \prime } = -\frac {k}{R^{2}} \]

6882

\[ {}x^{\prime \prime }-\left (1-\frac {{x^{\prime }}^{2}}{3}\right ) x^{\prime }+x = 0 \]

6899

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 12 x^{2} \]

6910

\[ {}x y^{\prime \prime }+2 y^{\prime } = 0 \]

6911

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

6912

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 0 \]

6913

\[ {}x^{2} y^{\prime \prime \prime }-3 x y^{\prime \prime }+3 y^{\prime } = 0 \]

6932

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+20 x y^{\prime }-78 y = 0 \]

6979

\[ {}2 y^{\prime \prime }-3 y^{2} = 0 \]

6987

\[ {}x y^{\prime \prime }-y^{\prime } = 0 \]

6998

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

6999

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = \sec \left (\ln \left (x \right )\right ) \]

7002

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-x \right ) y^{\prime }+\left (1-x \right ) y = 0 \]

7006

\[ {}y^{\prime \prime } = 2 y {y^{\prime }}^{3} \]

7479

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]

7480

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+y = 0 \]

7481

\[ {}y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

7482

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+x^{2} y = 0 \]

7483

\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-x^{2}+1\right ) y^{\prime }-2 y = 0 \]

7484

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

7485

\[ {}y^{\prime \prime \prime }-2 x y^{\prime \prime }+4 x^{2} y^{\prime }+8 x^{3} y = 0 \]

7486

\[ {}y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+y \,{\mathrm e}^{x} = 0 \]

7487

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+4 y = 0 \]

7488

\[ {}x^{4} y^{\prime \prime \prime \prime }-x^{2} y^{\prime \prime }+y = 0 \]

7489

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+y = 0 \]

7490

\[ {}y^{\prime \prime }+x y^{\prime }+y = 2 x \,{\mathrm e}^{x}-1 \]

7491

\[ {}x y^{\prime \prime }+x y^{\prime }-y = x^{2}+2 x \]

7492

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{2}+2 x \]

7493

\[ {}x^{3} y^{\prime \prime }+x y^{\prime }-y = \cos \left (\frac {1}{x}\right ) \]

7494

\[ {}x \left (1+x \right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }-y = x +\frac {1}{x} \]

7495

\[ {}2 x y^{\prime \prime }+\left (x -2\right ) y^{\prime }-y = x^{2}-1 \]

7496

\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (4 x +3\right ) y^{\prime }-y = x +\frac {1}{x} \]

7497

\[ {}x^{2} \left (-1+\ln \left (x \right )\right ) y^{\prime \prime }-x y^{\prime }+y = x \left (1-\ln \left (x \right )\right )^{2} \]

7498

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = \sec \left (x \right ) \]

7499

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+\frac {y}{4} = -\frac {x^{2}}{2}+\frac {1}{2} \]

7500

\[ {}\left (\cos \left (x \right )+\sin \left (x \right )\right ) y^{\prime \prime }-2 \cos \left (x \right ) y^{\prime }+\left (\cos \left (x \right )-\sin \left (x \right )\right ) y = \left (\cos \left (x \right )+\sin \left (x \right )\right )^{2} {\mathrm e}^{2 x} \]

7501

\[ {}\left (\cos \left (x \right )-\sin \left (x \right )\right ) y^{\prime \prime }-2 \sin \left (x \right ) y^{\prime }+\left (\cos \left (x \right )+\sin \left (x \right )\right ) y = \left (\cos \left (x \right )-\sin \left (x \right )\right )^{2} \]

7523

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x^{4}+2 x -1\right ) y = 0 \]

7524

\[ {}p \,x^{2} u^{\prime \prime }+q x u^{\prime }+r u = f \left (x \right ) \]

7525

\[ {}\sin \left (x \right ) u^{\prime \prime }+2 \cos \left (x \right ) u^{\prime }+\sin \left (x \right ) u = 0 \]

7526

\[ {}3 {y^{\prime \prime }}^{2}-y^{\prime } y^{\prime \prime \prime }-y^{\prime \prime } {y^{\prime }}^{2} = 0 \]

7527

\[ {}y^{\prime \prime }-\frac {x y^{\prime }}{-x^{2}+1}+\frac {y}{-x^{2}+1} = 0 \]

7528

\[ {}x^{2} y y^{\prime \prime } = x^{2} {y^{\prime }}^{2}-y^{2} \]

7532

\[ {}y^{\left (5\right )}-\frac {y^{\prime \prime \prime \prime }}{t} = 0 \]

7533

\[ {}x x^{\prime \prime }-{x^{\prime }}^{2} = 0 \]

7535

\[ {}u^{\prime \prime }-\left (2 x +1\right ) u^{\prime }+\left (x^{2}+x -1\right ) u = 0 \]

7542

\[ {}y^{\prime \prime }+2 y^{\prime }+\left (1+\frac {2}{\left (1+3 x \right )^{2}}\right ) y = 0 \]

7545

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

7546

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {2 y}{\left (1+x \right )^{2}} = 0 \]

7551

\[ {}u^{\prime \prime }-\cot \left (\theta \right ) u^{\prime } = 0 \]

7553

\[ {}a y^{\prime \prime } y^{\prime \prime \prime } = \sqrt {1+{y^{\prime \prime }}^{2}} \]

7557

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {y \left (-8+\sqrt {x}+x \right )}{4 x^{2}} = 0 \]

7558

\[ {}\left (-x^{2}+1\right ) z^{\prime \prime }+\left (1-3 x \right ) z^{\prime }+k z = 0 \]

7559

\[ {}\left (-x^{2}+1\right ) \eta ^{\prime \prime }-\left (1+x \right ) \eta ^{\prime }+\left (k +1\right ) \eta = 0 \]

7565

\[ {}y y^{\prime \prime }-y^{\prime } y^{2}-{y^{\prime }}^{2} = 0 \]

7674

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]

7675

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]

7676

\[ {}\left (3 x -1\right )^{2} y^{\prime \prime }+\left (9 x -3\right ) y^{\prime }-9 y = 0 \]

7677

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 0 \]

7678

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

7679

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0 \]

7680

\[ {}x y^{\prime \prime }-\left (1+x \right ) y^{\prime }+y = 0 \]

7681

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

7682

\[ {}y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]