5.24.37 Problems 3601 to 3700

Table 5.1087: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

17972

\[ {}a^{3} y^{\prime \prime \prime } y^{\prime \prime } = \sqrt {1+c^{2} {y^{\prime \prime }}^{2}} \]

17973

\[ {}y^{\prime \prime \prime } = \sqrt {1+{y^{\prime \prime }}^{2}} \]

17974

\[ {}2 \left (2 a -y\right ) y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

17975

\[ {}y^{\prime \prime }-y^{\prime \prime \prime } x +{y^{\prime \prime \prime }}^{3} = 0 \]

17976

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = y^{2} \ln \left (y\right ) \]

17977

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

17978

\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2}-y y^{\prime } = 0 \]

17979

\[ {}n \,x^{3} y^{\prime \prime } = \left (-x y^{\prime }+y\right )^{2} \]

17980

\[ {}y^{2} \left (x^{2} y^{\prime \prime }-x y^{\prime }+y\right ) = x^{3} \]

17981

\[ {}x^{2} y^{2} y^{\prime \prime }-3 y^{2} y^{\prime } x +4 y^{3}+x^{6} = 0 \]

17982

\[ {}y^{\prime } y^{\prime \prime }-x^{2} y y^{\prime }-x y^{2} = 0 \]

17983

\[ {}x \left (x^{2} y^{\prime }+2 x y\right ) y^{\prime \prime }+4 x {y^{\prime }}^{2}+8 x y y^{\prime }+4 y^{2}-1 = 0 \]

17984

\[ {}x \left (x y+1\right ) y^{\prime \prime }+x^{2} {y^{\prime }}^{2}+\left (4 x y+2\right ) y^{\prime }+y^{2}+1 = 0 \]

17985

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}-{y^{\prime }}^{4} = 0 \]

17986

\[ {}a^{2} y^{\prime \prime } = 2 x \sqrt {1+{y^{\prime }}^{2}} \]

17987

\[ {}x^{2} y y^{\prime \prime }+x^{2} {y^{\prime }}^{2}-5 x y y^{\prime } = 4 y^{2} \]

17988

\[ {}y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0 \]

17989

\[ {}5 {y^{\prime \prime \prime }}^{2}-3 y^{\prime \prime } y^{\prime \prime \prime \prime } = 0 \]

17990

\[ {}40 {y^{\prime \prime \prime }}^{3}-45 y^{\prime \prime } y^{\prime \prime \prime } y^{\prime \prime \prime \prime }+9 {y^{\prime \prime }}^{2} y^{\left (5\right )} = 0 \]

17991

\[ {}{y^{\prime \prime }}^{2}+2 x y^{\prime \prime }-y^{\prime } = 0 \]

17992

\[ {}{y^{\prime \prime }}^{2}-2 x y^{\prime \prime }-y^{\prime } = 0 \]

17993

\[ {}2 x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+12 x y^{\prime }-12 y = 0 \]

17994

\[ {}y^{\prime \prime \prime }-\frac {3 y^{\prime \prime }}{x}+\frac {6 y^{\prime }}{x^{2}}-\frac {6 y}{x^{3}} = 0 \]

17995

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]

17996

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+y = 0 \]

17997

\[ {}y^{\prime \prime } \sin \left (x \right )^{2} = 2 y \]

17998

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

17999

\[ {}y^{\prime \prime \prime } x -y^{\prime \prime }+x y^{\prime }-y = 0 \]

18000

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime \prime }-x y^{\prime \prime }+y^{\prime } = 0 \]

18001

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 2 x^{3} \]

18002

\[ {}y^{\prime \prime }+\frac {x y^{\prime }}{1-x}-\frac {y}{1-x} = x -1 \]

18003

\[ {}\left (x^{2}+2\right ) y^{\prime \prime \prime }-2 x y^{\prime \prime }+\left (x^{2}+2\right ) y^{\prime }-2 x y = x^{4}+12 \]

18006

\[ {}y^{\prime \prime }+\frac {y}{\ln \left (x \right ) x^{2}} = {\mathrm e}^{x} \left (\frac {2}{x}+\ln \left (x \right )\right ) \]

18008

\[ {}\left (2 x +1\right ) y^{\prime \prime }+\left (4 x -2\right ) y^{\prime }-8 y = 0 \]

18009

\[ {}y^{\prime \prime } \sin \left (x \right )^{2}+\sin \left (x \right ) \cos \left (x \right ) y^{\prime } = y \]

18026

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {n \left (n +1\right ) y}{x^{2}} = 0 \]

18027

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x \]

18028

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = x \ln \left (x \right ) \]

18029

\[ {}x^{2} y^{\prime \prime }-2 y = x^{2}+\frac {1}{x} \]

18030

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = x^{3}+3 x \]

18031

\[ {}\left (1+x \right )^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }+y = 4 \cos \left (\ln \left (1+x \right )\right ) \]

18032

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}+\left (1-\frac {m^{2}}{x^{2}}\right ) y = 0 \]

18033

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+y = 0 \]

18034

\[ {}y^{\prime \prime }+\frac {2 p y^{\prime }}{x}+y = 0 \]

18035

\[ {}x y^{\prime \prime }-y^{\prime }-x^{3} y = 0 \]

18036

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-1\right ) y = -3 \,{\mathrm e}^{x^{2}} \sin \left (2 x \right ) \]

18037

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {y \left (-8+\sqrt {x}+x \right )}{4 x^{2}} = 0 \]

18043

\[ {}y^{\prime \prime } = y^{2}+x \]

18044

\[ {}y^{\prime \prime }+2 y^{\prime }+y^{2} = 0 \]

18187

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

18188

\[ {}x y^{\prime \prime } = y^{\prime }+{y^{\prime }}^{3} \]

18190

\[ {}x^{2} y^{\prime \prime } = 2 x y^{\prime }+{y^{\prime }}^{2} \]

18191

\[ {}2 y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

18192

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

18193

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

18194

\[ {}\left (x^{2}+2 y^{\prime }\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \]

18195

\[ {}y y^{\prime \prime } = y^{\prime } y^{2}+{y^{\prime }}^{2} \]

18196

\[ {}y^{\prime \prime } = y^{\prime } {\mathrm e}^{y} \]

18197

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

18198

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

18199

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \]

18205

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}-2 y y^{\prime } = 0 \]

18209

\[ {}y^{\prime \prime }+2 x {y^{\prime }}^{2} = 0 \]

18214

\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 1 \]

18221

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime } = 0 \]

18222

\[ {}\left (x \,{\mathrm e}^{y}+y-x^{2}\right ) y^{\prime \prime } = 2 x y-{\mathrm e}^{y}-x \]

18233

\[ {}x^{2} y^{\prime \prime } = y^{\prime } \left (3 x -2 y^{\prime }\right ) \]

18239

\[ {}y^{2} y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

18244

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

18247

\[ {}y^{\prime \prime } = 2 y {y^{\prime }}^{3} \]

18249

\[ {}x y^{\prime \prime }-y^{\prime } = 3 x^{2} \]

18250

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

18252

\[ {}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = 1 \]

18258

\[ {}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

18260

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }-5 y = 0 \]

18261

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (x^{2}+6\right ) y = 0 \]

18263

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

18266

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

18270

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

18271

\[ {}y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

18274

\[ {}x y^{\prime \prime }+3 y^{\prime } = 0 \]

18275

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

18276

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

18277

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

18278

\[ {}y^{\prime \prime }-\frac {x y^{\prime }}{x -1}+\frac {y}{x -1} = 0 \]

18279

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

18280

\[ {}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

18281

\[ {}y^{\prime \prime }-x f \left (x \right ) y^{\prime }+f \left (x \right ) y = 0 \]

18282

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = 0 \]

18283

\[ {}x y^{\prime \prime }-\left (x +n \right ) y^{\prime }+n y = 0 \]

18284

\[ {}x y^{\prime \prime }-\left (1+x \right ) y^{\prime }+y = 0 \]

18285

\[ {}x y^{\prime \prime }-\left (x +2\right ) y^{\prime }+2 y = 0 \]

18286

\[ {}x y^{\prime \prime }-\left (x +3\right ) y^{\prime }+3 y = 0 \]

18287

\[ {}y^{\prime \prime }-f \left (x \right ) y^{\prime }+\left (f \left (x \right )-1\right ) y = 0 \]

18312

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+10 y = 0 \]

18313

\[ {}2 x^{2} y^{\prime \prime }+10 x y^{\prime }+8 y = 0 \]

18314

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]

18315

\[ {}4 x^{2} y^{\prime \prime }-3 y = 0 \]

18316

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

18317

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]