5.24.38 Problems 3701 to 3800

Table 5.1089: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

18318

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+3 y = 0 \]

18319

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

18320

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-16 y = 0 \]

18321

\[ {}x y^{\prime \prime }+\left (x^{2}-1\right ) y^{\prime }+x^{3} y = 0 \]

18322

\[ {}y^{\prime \prime }+3 x y^{\prime }+x^{2} y = 0 \]

18352

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = \left (x^{2}-1\right )^{2} \]

18353

\[ {}\left (x^{2}+x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-\left (x +2\right ) y = x \left (1+x \right )^{2} \]

18354

\[ {}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1-x \right )^{2} \]

18355

\[ {}x y^{\prime \prime }-\left (1+x \right ) y^{\prime }+y = x^{2} {\mathrm e}^{2 x} \]

18356

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x \,{\mathrm e}^{-x} \]

18376

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime } = 0 \]

18377

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

18378

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

18379

\[ {}x^{3} y^{\prime \prime \prime \prime }+8 x^{2} y^{\prime \prime \prime }+8 x y^{\prime \prime }-8 y^{\prime } = 0 \]

18414

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

18458

\[ {}x y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }-\left (4 x +9\right ) y = 0 \]

18459

\[ {}x y^{\prime \prime }+\left (2 x +3\right ) y^{\prime }+\left (x +3\right ) y = 3 \,{\mathrm e}^{-x} \]

18460

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

18487

\[ {}x^{\prime \prime }+\left (5 x^{4}-9 x^{2}\right ) x^{\prime }+x^{5} = 0 \]

18513

\[ {}t^{2} x^{\prime \prime }-6 t x^{\prime }+12 x = 0 \]

18516

\[ {}t^{2} x^{\prime \prime }-2 t x^{\prime }+2 x = 0 \]

18531

\[ {}x^{2} y^{\prime \prime }-\frac {x^{2} {y^{\prime }}^{2}}{2 y}+4 x y^{\prime }+4 y = 0 \]

18533

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+k^{2} y = 0 \]

18534

\[ {}\cos \left (x \right ) y^{\prime }+\sin \left (x \right ) y^{\prime \prime }+n y \sin \left (x \right ) = 0 \]

18536

\[ {}v^{\prime \prime } = \left (\frac {1}{v}+{v^{\prime }}^{4}\right )^{{1}/{3}} \]

18538

\[ {}\sqrt {y^{\prime }+y} = \left (y^{\prime \prime }+2 x \right )^{{1}/{4}} \]

18567

\[ {}y^{\prime \prime } = \frac {m \sqrt {1+{y^{\prime }}^{2}}}{k} \]

18568

\[ {}\phi ^{\prime \prime } = \frac {4 \pi n c}{\sqrt {v_{0}^{2}+\frac {2 e \left (\phi -V_{0} \right )}{m}}} \]

18590

\[ {}x^{4} y^{\prime \prime \prime \prime }+x^{3} y^{\prime \prime \prime }-20 x^{2} y^{\prime \prime }+20 x y^{\prime } = 17 x^{6} \]

18591

\[ {}t^{4} x^{\prime \prime \prime \prime }-2 t^{3} x^{\prime \prime \prime }-20 t^{2} x^{\prime \prime }+12 t x^{\prime }+16 x = \cos \left (3 \ln \left (t \right )\right ) \]

18595

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{x} \]

18596

\[ {}y^{\prime \prime } = c \left (1+{y^{\prime }}^{2}\right ) \]

18597

\[ {}y^{\prime \prime } = c \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

18598

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

18600

\[ {}1+{y^{\prime }}^{2}+\frac {m y^{\prime \prime }}{\sqrt {1+{y^{\prime }}^{2}}} = 0 \]

18602

\[ {}x y^{\prime \prime }+2 y^{\prime } = x y \]

18605

\[ {}y^{\prime \prime \prime }+\frac {3 y^{\prime \prime }}{x} = 0 \]

18606

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+5 y = \frac {1}{x} \]

18608

\[ {}v^{\prime \prime }+\frac {2 v^{\prime }}{r} = 0 \]

18609

\[ {}y^{\prime \prime }-2 y y^{\prime } = 0 \]

18610

\[ {}y^{\prime \prime }-{y^{\prime }}^{2}-y {y^{\prime }}^{3} = 0 \]

18611

\[ {}\left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = r y^{\prime \prime } \]

18612

\[ {}y^{\prime \prime \prime } y^{\prime }-3 {y^{\prime \prime }}^{2}+3 y^{\prime \prime } {y^{\prime }}^{2}-2 {y^{\prime }}^{4}-x {y^{\prime }}^{5} = 0 \]

18613

\[ {}\left (1+y^{2}\right ) y^{\prime \prime }-2 y {y^{\prime }}^{2}-2 \left (1+y^{2}\right ) y^{\prime } = y^{2} \left (1+y^{2}\right ) \]

18614

\[ {}y^{2} y^{\prime \prime \prime }-\left (3 y y^{\prime }+2 x y^{2}\right ) y^{\prime \prime }+\left (2 {y^{\prime }}^{2}+2 x y y^{\prime }+3 x^{2} y^{2}\right ) y^{\prime }+x^{3} y^{3} = 0 \]

18615

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

18616

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime } = 0 \]

18617

\[ {}x^{3} v^{\prime \prime \prime }+2 x^{2} v^{\prime \prime }+v = 0 \]

18618

\[ {}v^{\prime \prime }+\frac {2 x v^{\prime }}{x^{2}+1}+\frac {v}{\left (x^{2}+1\right )^{2}} = 0 \]

18684

\[ {}x^{3} y^{\prime \prime \prime }+7 x^{2} y^{\prime \prime }+8 x y^{\prime } = \ln \left (x \right )^{2} \]

18685

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }-8 y = x \]

18686

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = x^{3} \]

18687

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = \ln \left (x \right ) \]

18688

\[ {}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

18689

\[ {}x y^{\prime \prime }+2 y^{\prime } = 2 x \]

18690

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = \ln \left (x \right ) \]

18691

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 2 x \]

18692

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = x \]

18693

\[ {}y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+\csc \left (x \right )^{2} y = \cos \left (x \right ) \]

18694

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (3 x -2\right ) y^{\prime }+y = 0 \]

18695

\[ {}\left (3 x^{2}+x \right ) y^{\prime \prime }+2 \left (6 x +1\right ) y^{\prime }+6 y = \sin \left (x \right ) \]

18696

\[ {}\left (x^{3}+x^{2}-3 x +1\right ) y^{\prime \prime \prime }+\left (9 x^{2}+6 x -9\right ) y^{\prime \prime }+\left (18 x +6\right ) y^{\prime }+6 y = x^{3} \]

18697

\[ {}x^{2} y^{\prime \prime \prime }+5 x y^{\prime \prime }+4 y^{\prime } = -\frac {1}{x^{2}} \]

18699

\[ {}x^{2} y^{\prime \prime } = \ln \left (x \right ) \]

18701

\[ {}y^{\prime \prime } = \frac {1}{y^{2}} \]

18702

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

18703

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 1 \]

18704

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-1-{y^{\prime }}^{2} = 0 \]

18705

\[ {}x y^{\prime \prime }+3 y^{\prime } = 3 x \]

18709

\[ {}V^{\prime \prime }+\frac {2 V^{\prime }}{r} = 0 \]

18710

\[ {}V^{\prime \prime }+\frac {V^{\prime }}{r} = 0 \]

18724

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = 0 \]

18725

\[ {}v^{\prime \prime }+\frac {2 v^{\prime }}{r} = 0 \]

18923

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 2 \ln \left (x \right ) \]

18924

\[ {}x^{2} y^{\prime \prime }+y = 3 x^{2} \]

18925

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

18926

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

18927

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y = x^{4} \]

18928

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = x^{4} \]

18929

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-20 y = \left (1+x \right )^{2} \]

18930

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+5 y = x^{5} \]

18931

\[ {}\left (2 x +5\right )^{2} y^{\prime \prime }-6 \left (5-2 x \right ) y^{\prime }+8 y = 0 \]

18932

\[ {}\left (2 x -1\right )^{3} y^{\prime \prime }+\left (2 x -1\right ) y^{\prime }-2 y = 0 \]

18933

\[ {}y^{\prime \prime \prime }-\frac {4 y^{\prime \prime }}{x}+\frac {5 y^{\prime }}{x^{2}}-\frac {2 y}{x^{3}} = 1 \]

18934

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = {\mathrm e}^{x} \]

18935

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 x y^{\prime }-8 y = 0 \]

18936

\[ {}\left (x +a \right )^{2} y^{\prime \prime }-4 \left (x +a \right ) y^{\prime }+6 y = x \]

18937

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 x y^{\prime }-4 y = 0 \]

18938

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+2 y = 10 c +\frac {10}{x} \]

18939

\[ {}16 \left (1+x \right )^{4} y^{\prime \prime \prime \prime }+96 \left (1+x \right )^{3} y^{\prime \prime \prime }+104 \left (1+x \right )^{2} y^{\prime \prime }+8 \left (1+x \right ) y^{\prime }+y = x^{2}+4 x +3 \]

18940

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{m} \]

18941

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{m} \]

18942

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \left (\ln \left (x \right )+1\right )^{2} \]

18943

\[ {}x^{4} y^{\prime \prime \prime }+2 x^{3} y^{\prime \prime }-x^{2} y^{\prime }+x y = 1 \]

18944

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (1-x \right )^{2}} \]

18945

\[ {}x^{2} y^{\prime \prime }-\left (2 m -1\right ) x y^{\prime }+\left (m^{2}+n^{2}\right ) y = n^{2} x^{m} \ln \left (x \right ) \]

18946

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+y = \frac {\ln \left (x \right ) \sin \left (\ln \left (x \right )\right )+1}{x} \]

18947

\[ {}y^{\prime \prime \prime } x +\left (x^{2}-3\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

18948

\[ {}x^{5} y^{\prime \prime }+3 x^{3} y^{\prime }+\left (3-6 x \right ) x^{2} y = x^{4}+2 x -5 \]

18949

\[ {}x y^{\prime \prime }+2 x y^{\prime }+2 y = 0 \]