4.24.9 Problems 801 to 900

Table 4.1027: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

Sympy

8842

\[ {} y^{\prime \prime }-x^{2} y-x^{4}+2 = 0 \]

8843

\[ {} y^{\prime \prime }-2 x^{2} y-x^{4}+1 = 0 \]

8844

\[ {} y^{\prime \prime }-x^{3} y-x^{3} = 0 \]

8845

\[ {} y^{\prime \prime }-x^{3} y-x^{4} = 0 \]

8846

\[ {} y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{2} = 0 \]

8847

\[ {} y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{3} = 0 \]

8848

\[ {} y^{\prime \prime }-x y^{\prime }-x y-x = 0 \]

8849

\[ {} y^{\prime \prime }-x^{2} y^{\prime }-x y-x^{2} = 0 \]

8850

\[ {} y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{3}-x^{2} = 0 \]

8851

\[ {} y^{\prime \prime }-x^{2} y^{\prime }-x^{3} y-x^{4}-x^{2} = 0 \]

8852

\[ {} y^{\prime \prime }-\frac {y^{\prime }}{x}-x y-x^{2}-\frac {1}{x} = 0 \]

8853

\[ {} y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{2} y-x^{3}-\frac {1}{x} = 0 \]

8854

\[ {} y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{3} y-x^{4}-\frac {1}{x} = 0 \]

8855

\[ {} y^{\prime \prime }-x^{3} y^{\prime }-x y-x^{3}-x^{2} = 0 \]

8856

\[ {} y^{\prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0 \]

8857

\[ {} y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{4}-x^{3} = 0 \]

8858

\[ {} y^{\prime \prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0 \]

8873

\[ {} x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = 1 \]

8874

\[ {} x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = x \]

8875

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-4 y = x \]

8876

\[ {} x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = 0 \]

8877

\[ {} x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = x \]

8878

\[ {} 5 x^{5} y^{\prime \prime \prime \prime }+4 x^{4} y^{\prime \prime \prime }+x^{2} y^{\prime }+x y = 0 \]

8879

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

8880

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = x \]

8881

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+x {y^{\prime }}^{2} = 1 \]

8882

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+y {y^{\prime }}^{2} = 0 \]

8883

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

8884

\[ {} y^{\prime \prime }+\sin \left (y\right ) {y^{\prime }}^{2} = 0 \]

8885

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

8888

\[ {} 4 x^{2} y^{\prime \prime }+y = 8 \sqrt {x}\, \left (\ln \left (x \right )+1\right ) \]

8953

\[ {} \frac {x y^{\prime \prime }}{1-x}+y = \frac {1}{1-x} \]

8954

\[ {} \frac {x y^{\prime \prime }}{1-x}+x y = 0 \]

8955

\[ {} \frac {x y^{\prime \prime }}{1-x}+y = \cos \left (x \right ) \]

8956

\[ {} \frac {x y^{\prime \prime }}{-x^{2}+1}+y = 0 \]

8957

\[ {} y^{\prime \prime } = \left (x^{2}+3\right ) y \]

8961

\[ {} y^{\prime \prime } \sin \left (2 x \right )^{2}+y^{\prime } \sin \left (4 x \right )-4 y = 0 \]

8962

\[ {} y^{\prime \prime } = A y^{{2}/{3}} \]

8963

\[ {} y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

8964

\[ {} y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }-y = 0 \]

8965

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

8966

\[ {} 4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 4 \sqrt {x}\, {\mathrm e}^{x} \]

8967

\[ {} x y^{\prime \prime }-\left (2+2 x \right ) y^{\prime }+\left (x +2\right ) y = 6 x^{3} {\mathrm e}^{x} \]

8981

\[ {} x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = 0 \]

8983

\[ {} y^{\prime \prime }+{\mathrm e}^{y} = 0 \]

9084

\[ {} {y^{\prime \prime }}^{2}+y^{\prime } = 0 \]

9085

\[ {} y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

9087

\[ {} {y^{\prime \prime }}^{2}+y^{\prime } = 1 \]

9088

\[ {} y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

9090

\[ {} {y^{\prime \prime }}^{2}+y^{\prime } = x \]

9091

\[ {} y^{\prime \prime }+{y^{\prime }}^{2} = x \]

9093

\[ {} {y^{\prime \prime }}^{2}+y^{\prime }+y = 0 \]

9094

\[ {} y^{\prime \prime }+{y^{\prime }}^{2}+y = 0 \]

9116

\[ {} y {y^{\prime \prime }}^{2}+y^{\prime } = 0 \]

9117

\[ {} y {y^{\prime \prime }}^{2}+{y^{\prime }}^{3} = 0 \]

9118

\[ {} y^{2} {y^{\prime \prime }}^{2}+y^{\prime } = 0 \]

9119

\[ {} y {y^{\prime \prime }}^{4}+{y^{\prime }}^{2} = 0 \]

9120

\[ {} y^{3} {y^{\prime \prime }}^{2}+y y^{\prime } = 0 \]

9121

\[ {} y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

9122

\[ {} y {y^{\prime \prime }}^{3}+y^{3} y^{\prime } = 0 \]

9123

\[ {} y {y^{\prime \prime }}^{3}+y^{3} {y^{\prime }}^{5} = 0 \]

9124

\[ {} y^{\prime \prime }+x y^{\prime }+y {y^{\prime }}^{2} = 0 \]

9125

\[ {} y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y {y^{\prime }}^{2} = 0 \]

9126

\[ {} y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y^{2} {y^{\prime }}^{2} = 0 \]

9127

\[ {} y^{\prime \prime }+\left (\sin \left (x \right )+2 x \right ) y^{\prime }+\cos \left (y\right ) y {y^{\prime }}^{2} = 0 \]

9128

\[ {} y^{\prime } y^{\prime \prime }+y^{2} = 0 \]

9129

\[ {} y^{\prime } y^{\prime \prime }+y^{n} = 0 \]

9131

\[ {} y^{\prime \prime }+\left (x +3\right ) y^{\prime }+\left (y^{2}+3\right ) {y^{\prime }}^{2} = 0 \]

9132

\[ {} y^{\prime \prime }+x y^{\prime }+y {y^{\prime }}^{2} = 0 \]

9133

\[ {} y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+{y^{\prime }}^{2} = 0 \]

9134

\[ {} 3 y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+\sin \left (y\right ) {y^{\prime }}^{2} = 0 \]

9135

\[ {} 10 y^{\prime \prime }+x^{2} y^{\prime }+\frac {3 {y^{\prime }}^{2}}{y} = 0 \]

9136

\[ {} 10 y^{\prime \prime }+\left ({\mathrm e}^{x}+3 x \right ) y^{\prime }+\frac {3 \,{\mathrm e}^{y} {y^{\prime }}^{2}}{\sin \left (y\right )} = 0 \]

9137

\[ {} y^{\prime \prime }-\frac {2 y}{x^{2}} = x \,{\mathrm e}^{-\sqrt {x}} \]

9138

\[ {} y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = x \]

9139

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0 \]

9140

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }-c^{2} y = 0 \]

9141

\[ {} x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y = \frac {1}{x^{2}} \]

9142

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 2 x^{3}-x^{2} \]

9143

\[ {} y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+4 \csc \left (x \right )^{2} y = 0 \]

9144

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+\left (1+x \right ) y^{\prime }+y = 4 \cos \left (\ln \left (1+x \right )\right ) \]

9145

\[ {} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y = 0 \]

9146

\[ {} x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 8 x^{3} \sin \left (x \right )^{2} \]

9147

\[ {} x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5} \]

9148

\[ {} y^{\prime \prime } \cos \left (x \right )+\sin \left (x \right ) y^{\prime }-2 y \cos \left (x \right )^{3} = 2 \cos \left (x \right )^{5} \]

9149

\[ {} y^{\prime \prime }+\left (1-\frac {1}{x}\right ) y^{\prime }+4 x^{2} y \,{\mathrm e}^{-2 x} = 4 \left (x^{3}+x^{2}\right ) {\mathrm e}^{-3 x} \]

9150

\[ {} y^{\prime \prime }-x^{2} y^{\prime }+x y = x^{m +1} \]

9151

\[ {} y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0 \]

9152

\[ {} \cos \left (x \right )^{2} y^{\prime \prime }-2 \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y = 0 \]

9153

\[ {} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-1\right ) y = -3 \,{\mathrm e}^{x^{2}} \sin \left (x \right ) \]

9154

\[ {} y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y = x \]

9155

\[ {} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-3\right ) y = {\mathrm e}^{x^{2}} \]

9156

\[ {} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = {\mathrm e}^{x^{2}} \sec \left (x \right ) \]

9157

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 \left (x^{2}+1\right ) y = 0 \]

9158

\[ {} 4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{8}+6 x^{4}+4\right ) y = 0 \]

9159

\[ {} x^{2} y^{\prime \prime }+\left (x y^{\prime }-y\right )^{2} = 0 \]

9160

\[ {} x y^{\prime \prime }+2 y^{\prime }-x y = 0 \]

9161

\[ {} x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

9168

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-5\right ) y = 0 \]

9169

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]