|
# |
ODE |
Mathematica |
Maple |
Sympy |
|
\[
{} \left (y+1\right ) y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 2 a y^{\prime \prime }+{y^{\prime }}^{3} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime \prime } = y^{\prime }+x^{5}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime \prime }+y^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = 2 y {y^{\prime }}^{3}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y y^{\prime \prime }+{y^{\prime }}^{3}-{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y y^{\prime \prime }+{y^{\prime }}^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime } \cos \left (x \right ) = y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = x {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = x {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = -{\mathrm e}^{-2 y}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime } = -{\mathrm e}^{-2 y}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 2 y^{\prime \prime } = \sin \left (2 y\right )
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} 2 y^{\prime \prime } = \sin \left (2 y\right )
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} x^{3} y^{\prime \prime }-x^{2} y^{\prime } = -x^{2}+3
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = {\mathrm e}^{x} {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 y^{\prime \prime } = {y^{\prime }}^{3} \sin \left (2 x \right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime }+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = 1+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-y y^{\prime } \cos \left (y\right )\right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (y y^{\prime \prime }+1+{y^{\prime }}^{2}\right )^{2} = \left (1+{y^{\prime }}^{2}\right )^{3}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime } = y^{\prime } \left (2 x -y^{\prime }\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime } = y^{\prime } \left (3 x -2 y^{\prime }\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime \prime } = y^{\prime } \left (2-3 x y^{\prime }\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{4} y^{\prime \prime } = y^{\prime } \left (y^{\prime }+x^{3}\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = 2 x +\left (x^{2}-y^{\prime }\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {y^{\prime \prime }}^{2}-2 y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime }+x^{2} = 0
\]
|
✗ |
✓ |
✗ |
|
|
\[
{} {y^{\prime \prime }}^{2}-x y^{\prime \prime }+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {y^{\prime \prime }}^{3} = 12 y^{\prime } \left (x y^{\prime \prime }-2 y^{\prime }\right )
\]
|
✗ |
✓ |
✗ |
|
|
\[
{} 3 y y^{\prime } y^{\prime \prime } = {y^{\prime }}^{3}-1
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 4 y {y^{\prime }}^{2} y^{\prime \prime } = {y^{\prime }}^{4}+3
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+5 x y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 9 x^{2} y^{\prime \prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x^{2} y^{\prime \prime }+5 x y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+5 x y^{\prime }+5 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-8 x y^{\prime }+8 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime \prime }+y^{\prime }-x y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t y^{\prime \prime }+4 y^{\prime } = t^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (t^{2}+9\right ) y^{\prime \prime }+2 t y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{2} y^{\prime \prime }-3 t y^{\prime }+5 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t y^{\prime \prime }+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{2} y^{\prime \prime }-2 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+\frac {\left (t^{2}-1\right ) y^{\prime }}{t}+\frac {t^{2} y}{\left (1+{\mathrm e}^{\frac {t^{2}}{2}}\right )^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t y^{\prime \prime }-y^{\prime }+4 t^{3} y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y y^{\prime \prime } = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y y^{\prime \prime } = x
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{2} y^{\prime \prime } = x
\]
|
✗ |
✓ |
✗ |
|
|
\[
{} 3 y y^{\prime \prime } = \sin \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} 3 y y^{\prime \prime }+y = 5
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} a y y^{\prime \prime }+b y = c
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} a y^{2} y^{\prime \prime }+b y^{2} = c
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = \frac {1}{y}-\frac {x y^{\prime }}{y^{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-y y^{\prime } = 2 x
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-x y^{\prime }-x y-x = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-x y^{\prime }-x y-2 x = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-x y^{\prime }-x y-3 x = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-x y^{\prime }-x y-x^{2}-x = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-x y^{\prime }-x y-x^{3}+2 = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-x y^{\prime }-x y-x^{4}-6 = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-x y^{\prime }-x y-x^{5}+24 = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-x y^{\prime }-x y-x = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-x y^{\prime }-x y-x^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-x y^{\prime }-x y-x^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-a x y^{\prime }-b x y-c x = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-y^{\prime }-x y-x = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-y^{\prime }-x y-x^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-2 y^{\prime }-x y-x^{2}-2 = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-4 y^{\prime }-x y-x^{2}-4 = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-y^{\prime }-x y-x^{3}+1 = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-2 y^{\prime }-x y-x^{3}-x^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-y^{\prime }-x y-x^{3}+2 = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-2 y^{\prime }-x y-x^{3}+2 = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-4 y^{\prime }-x y-x^{3}+2 = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-6 y^{\prime }-x y-x^{3}+2 = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-8 y^{\prime }-x y-x^{3}+2 = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-y^{\prime }-x y-x^{4}+3 = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-y^{\prime }-x y-x^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-x y-x^{3}+2 = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-x y-x^{6}+64 = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-x y-x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-x y-x^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-x y-x^{3} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-x y-x^{6}-x^{3}+42 = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-x^{2} y-x^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-x^{2} y-x^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-x^{2} y-x^{4} = 0
\]
|
✓ |
✓ |
✗ |
|