6.70 Problems 6901 to 7000

Table 6.139: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

6901

\[ {} y y^{\prime }+x = a \sqrt {1+{y^{\prime }}^{2}} \]

6902

\[ {} y y^{\prime } = x +y^{2}-y^{2} {y^{\prime }}^{2} \]

6903

\[ {} y-\frac {1}{\sqrt {1+{y^{\prime }}^{2}}} = x +\frac {y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}} \]

6904

\[ {} y-2 x y^{\prime } = x {y^{\prime }}^{2} \]

6905

\[ {} \frac {y-x y^{\prime }}{y^{\prime }+y^{2}} = \frac {y-x y^{\prime }}{1+x^{2} y^{\prime }} \]

6906

\[ {} 2 x y+\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

6907

\[ {} \left (x +\sqrt {y^{2}-x y}\right ) y^{\prime }-y = 0 \]

6908

\[ {} x +y-\left (x -y\right ) y^{\prime } = 0 \]

6909

\[ {} x y^{\prime }-y-\sin \left (\frac {y}{x}\right ) x = 0 \]

6910

\[ {} 2 x^{2} y+y^{3}+\left (x y^{2}-2 x^{3}\right ) y^{\prime } = 0 \]

6911

\[ {} y^{2}+\left (x \sqrt {-x^{2}+y^{2}}-x y\right ) y^{\prime } = 0 \]

6912

\[ {} \frac {y \cos \left (\frac {y}{x}\right )}{x}-\left (\frac {x \sin \left (\frac {y}{x}\right )}{y}+\cos \left (\frac {y}{x}\right )\right ) y^{\prime } = 0 \]

6913

\[ {} y+x \ln \left (\frac {y}{x}\right ) y^{\prime }-2 x y^{\prime } = 0 \]

6914

\[ {} 2 y \,{\mathrm e}^{\frac {x}{y}}+\left (y-2 x \,{\mathrm e}^{\frac {x}{y}}\right ) y^{\prime } = 0 \]

6915

\[ {} {\mathrm e}^{\frac {y}{x}} x -y \sin \left (\frac {y}{x}\right )+x \sin \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

6916

\[ {} x^{2}+y^{2} = 2 y y^{\prime } x \]

6917

\[ {} {\mathrm e}^{\frac {y}{x}} x +y = x y^{\prime } \]

6918

\[ {} y^{\prime }-\frac {y}{x}+\csc \left (\frac {y}{x}\right ) = 0 \]

6919

\[ {} x y-y^{2}-x^{2} y^{\prime } = 0 \]

6920

\[ {} x +2 y-4-\left (2 x -4 y\right ) y^{\prime } = 0 \]

6921

\[ {} 3 x +2 y+1-\left (3 x +2 y-1\right ) y^{\prime } = 0 \]

6922

\[ {} x +y+1+\left (2 x +2 y+2\right ) y^{\prime } = 0 \]

6923

\[ {} x +y-1+\left (2 x +2 y-3\right ) y^{\prime } = 0 \]

6924

\[ {} x +y-1-\left (x -y-1\right ) y^{\prime } = 0 \]

6925

\[ {} x +y+\left (2 x +2 y-1\right ) y^{\prime } = 0 \]

6926

\[ {} 7 y-3+\left (2 x +1\right ) y^{\prime } = 0 \]

6927

\[ {} x +2 y+\left (3 x +6 y+3\right ) y^{\prime } = 0 \]

6928

\[ {} x +2 y+\left (y-1\right ) y^{\prime } = 0 \]

6929

\[ {} 3 x -2 y+4-\left (2 x +7 y-1\right ) y^{\prime } = 0 \]

6930

\[ {} x +y+\left (3 x +3 y-4\right ) y^{\prime } = 0 \]

6931

\[ {} 3 x +2 y+3-\left (x +2 y-1\right ) y^{\prime } = 0 \]

6932

\[ {} y+7+\left (2 x +y+3\right ) y^{\prime } = 0 \]

6933

\[ {} x +y+2-\left (x -y-4\right ) y^{\prime } = 0 \]

6934

\[ {} 3 x^{2} y+8 x y^{2}+\left (x^{3}+8 x^{2} y+12 y^{2}\right ) y^{\prime } = 0 \]

6935

\[ {} \frac {2 x y+1}{y}+\frac {\left (y-x \right ) y^{\prime }}{y^{2}} = 0 \]

6936

\[ {} 2 x y+\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

6937

\[ {} {\mathrm e}^{x} \sin \left (y\right )+{\mathrm e}^{-y}-\left (x \,{\mathrm e}^{-y}-{\mathrm e}^{x} \cos \left (y\right )\right ) y^{\prime } = 0 \]

6938

\[ {} \cos \left (y\right )-\left (x \sin \left (y\right )-y^{2}\right ) y^{\prime } = 0 \]

6939

\[ {} x -2 x y+{\mathrm e}^{y}+\left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

6940

\[ {} x^{2}-x +y^{2}-\left ({\mathrm e}^{y}-2 x y\right ) y^{\prime } = 0 \]

6941

\[ {} 2 x +y \cos \left (x \right )+\left (2 y+\sin \left (x \right )-\sin \left (y\right )\right ) y^{\prime } = 0 \]

6942

\[ {} x \sqrt {x^{2}+y^{2}}-\frac {x^{2} y y^{\prime }}{-\sqrt {x^{2}+y^{2}}+y} = 0 \]

6943

\[ {} 4 x^{3}-\sin \left (x \right )+y^{3}-\left (y^{2}+1-3 x y^{2}\right ) y^{\prime } = 0 \]

6944

\[ {} {\mathrm e}^{x} \left (y^{3}+x y^{3}+1\right )+3 y^{2} \left (x \,{\mathrm e}^{x}-6\right ) y^{\prime } = 0 \]

6945

\[ {} \sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

6946

\[ {} y^{2} {\mathrm e}^{x y^{2}}+4 x^{3}+\left (2 x y \,{\mathrm e}^{x y^{2}}-3 y^{2}\right ) y^{\prime } = 0 \]

6947

\[ {} y^{2}+y-x y^{\prime } = 0 \]

6948

\[ {} y \sec \left (x \right )+y^{\prime } \sin \left (x \right ) = 0 \]

6949

\[ {} {\mathrm e}^{x}-\sin \left (y\right )+\cos \left (y\right ) y^{\prime } = 0 \]

6950

\[ {} \left (x^{2}+1\right ) y^{\prime }+x y = 0 \]

6951

\[ {} y^{3}+x y^{2}+y+\left (x^{3}+x^{2} y+x \right ) y^{\prime } = 0 \]

6952

\[ {} 3 y-x y^{\prime } = 0 \]

6953

\[ {} y-3 x y^{\prime } = 0 \]

6954

\[ {} y \left (2 x^{2} y^{3}+3\right )+x \left (x^{2} y^{3}-1\right ) y^{\prime } = 0 \]

6955

\[ {} 2 x y+x^{2}+\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

6956

\[ {} x^{2}+y \cos \left (x \right )+\left (y^{3}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

6957

\[ {} x^{2}+y^{2}+x +y y^{\prime } x = 0 \]

6958

\[ {} x -2 x y+{\mathrm e}^{y}+\left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

6959

\[ {} {\mathrm e}^{x} \sin \left (y\right )+{\mathrm e}^{-y}-\left (x \,{\mathrm e}^{-y}-{\mathrm e}^{x} \cos \left (y\right )\right ) y^{\prime } = 0 \]

6960

\[ {} x^{2}-y^{2}-y-\left (x^{2}-y^{2}-x \right ) y^{\prime } = 0 \]

6961

\[ {} x^{4} y^{2}-y+\left (x^{2} y^{4}-x \right ) y^{\prime } = 0 \]

6962

\[ {} y \left (2 x +y^{3}\right )-x \left (2 x -y^{3}\right ) y^{\prime } = 0 \]

6963

\[ {} \arctan \left (x y\right )+\frac {x y-2 x y^{2}}{1+x^{2} y^{2}}+\frac {\left (x^{2}-2 x^{2} y\right ) y^{\prime }}{1+x^{2} y^{2}} = 0 \]

6964

\[ {} {\mathrm e}^{x} \left (1+x \right )+\left ({\mathrm e}^{y} y-x \,{\mathrm e}^{x}\right ) y^{\prime } = 0 \]

6965

\[ {} \frac {x y+1}{y}+\frac {\left (-x +2 y\right ) y^{\prime }}{y^{2}} = 0 \]

6966

\[ {} y^{2}-3 x y-2 x^{2}+\left (x y-x^{2}\right ) y^{\prime } = 0 \]

6967

\[ {} \left (2 x +y+1\right ) y-x \left (x +2 y-1\right ) y^{\prime } = 0 \]

6968

\[ {} y \left (2 x -y-1\right )+x \left (2 y-x -1\right ) y^{\prime } = 0 \]

6969

\[ {} y^{2}+12 x^{2} y+\left (2 x y+4 x^{3}\right ) y^{\prime } = 0 \]

6970

\[ {} x \left (2 x +3 y\right ) y^{\prime }+3 \left (x +y\right )^{2} = 0 \]

6971

\[ {} y-\left (x^{2}+y^{2}+x \right ) y^{\prime } = 0 \]

6972

\[ {} 2 x y+\left (a +x^{2}+y^{2}\right ) y^{\prime } = 0 \]

6973

\[ {} 2 x y+x^{2}+b +\left (a +x^{2}+y^{2}\right ) y^{\prime } = 0 \]

6974

\[ {} x y^{\prime }+y = x^{3} \]

6975

\[ {} y^{\prime }+a y = b \]

6976

\[ {} x y^{\prime }+y = y^{2} \ln \left (x \right ) \]

6977

\[ {} x^{\prime }+2 x y = {\mathrm e}^{-y^{2}} \]

6978

\[ {} r^{\prime } = \left (r+{\mathrm e}^{-\theta }\right ) \tan \left (\theta \right ) \]

6979

\[ {} y^{\prime }-\frac {2 x y}{x^{2}+1} = 1 \]

6980

\[ {} y^{\prime }+y = x y^{3} \]

6981

\[ {} \left (-x^{3}+1\right ) y^{\prime }-2 \left (1+x \right ) y = y^{{5}/{2}} \]

6982

\[ {} \tan \left (\theta \right ) r^{\prime }-r = \tan \left (\theta \right )^{2} \]

6983

\[ {} 2 y+y^{\prime } = 3 \,{\mathrm e}^{-2 x} \]

6984

\[ {} 2 y+y^{\prime } = \frac {3 \,{\mathrm e}^{-2 x}}{4} \]

6985

\[ {} 2 y+y^{\prime } = \sin \left (x \right ) \]

6986

\[ {} y^{\prime }+y \cos \left (x \right ) = {\mathrm e}^{2 x} \]

6987

\[ {} y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

6988

\[ {} x y^{\prime }+y = x \sin \left (x \right ) \]

6989

\[ {} x y^{\prime }-y = x^{2} \sin \left (x \right ) \]

6990

\[ {} x y^{\prime }+x y^{2}-y = 0 \]

6991

\[ {} x y^{\prime }-y \left (2 y \ln \left (x \right )-1\right ) = 0 \]

6992

\[ {} x^{2} \left (x -1\right ) y^{\prime }-y^{2}-x \left (x -2\right ) y = 0 \]

6993

\[ {} y^{\prime }-y = {\mathrm e}^{x} \]

6994

\[ {} y^{\prime }+\frac {y}{x} = \frac {y^{2}}{x} \]

6995

\[ {} 2 \cos \left (x \right ) y^{\prime } = \sin \left (x \right ) y-y^{3} \]

6996

\[ {} \left (x -\cos \left (y\right )\right ) y^{\prime }+\tan \left (y\right ) = 0 \]

6997

\[ {} y^{\prime } = x^{3}+\frac {2 y}{x}-\frac {y^{2}}{x} \]

6998

\[ {} y^{\prime } = 2 \tan \left (x \right ) \sec \left (x \right )-\sin \left (x \right ) y^{2} \]

6999

\[ {} y^{\prime } = \frac {1}{x^{2}}-\frac {y}{x}-y^{2} \]

7000

\[ {} y^{\prime } = 1+\frac {y}{x}-\frac {y^{2}}{x^{2}} \]