| # | ODE | Mathematica | Maple | Sympy |
| \[
{} -y y^{\prime }+{y^{\prime }}^{2}+y^{\prime \prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} a y y^{\prime \prime }+y^{\prime \prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{2}-\left (1-2 x y\right ) y^{\prime }+x y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = f \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (1-y\right ) y^{\prime }+x {y^{\prime }}^{2}-x \left (1-y\right ) y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{3} y^{\prime }-y^{\prime } y^{\prime \prime }+y y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 y^{\prime } y^{\prime \prime }+\left (a +y\right ) y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 y^{2}+18 y y^{\prime } x +9 x^{2} {y^{\prime }}^{2}+9 x^{2} y y^{\prime \prime }+3 x^{3} y^{\prime } y^{\prime \prime }+x^{3} y y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 {y^{\prime }}^{3}+3 y^{\prime \prime }+6 y y^{\prime } y^{\prime \prime }+\left (x +y^{2}\right ) y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 15 {y^{\prime }}^{3}-18 y y^{\prime } y^{\prime \prime }+4 y^{2} y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 40 {y^{\prime }}^{3}-45 y y^{\prime } y^{\prime \prime }+9 y^{2} y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2}+y^{\prime } y^{\prime \prime \prime } = 2 {y^{\prime \prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } y^{\prime \prime } = a x {y^{\prime }}^{5}+3 {y^{\prime \prime }}^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 y^{\prime } y^{\prime \prime \prime } = 2 {y^{\prime \prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+{y^{\prime }}^{2}\right ) y^{\prime \prime \prime } = 3 y^{\prime } {y^{\prime \prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+{y^{\prime }}^{2}\right ) y^{\prime \prime \prime } = \left (a +3 y^{\prime }\right ) {y^{\prime \prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3} y^{\prime \prime \prime } = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } y^{\prime \prime \prime } = 2
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } y^{\prime \prime \prime } = a \sqrt {1+b^{2} {y^{\prime \prime }}^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x y^{\prime \prime } y^{\prime \prime \prime } = -a^{2}+{y^{\prime \prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 1-{y^{\prime \prime }}^{2}+2 x y^{\prime \prime } y^{\prime \prime \prime }+\left (-x^{2}+1\right ) {y^{\prime \prime \prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \sqrt {1+{y^{\prime \prime }}^{2}}\, \left (1-y^{\prime \prime \prime }\right ) = y^{\prime \prime } y^{\prime \prime \prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y^{\prime \prime } y^{\prime \prime \prime \prime } = 5 {y^{\prime \prime \prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 40 {y^{\prime \prime \prime }}^{3}-45 y^{\prime \prime } y^{\prime \prime \prime } y^{\prime \prime \prime \prime }+9 {y^{\prime \prime }}^{2} y^{\left (5\right )} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {x y}{x^{2}-y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x +y-3}{x -y-1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {2 x +y-1}{4 x +2 y+5}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-\frac {2 y}{1+x} = \left (1+x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+x y = x^{3} y^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y+x y^{2}-x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2} \left (1+{y^{\prime }}^{2}\right ) = R^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = x y^{\prime }+\frac {a y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = x {y^{\prime }}^{2}+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (1-y\right ) y^{\prime }+\left (1+x \right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y \left (x^{2}+1\right ) y^{\prime }-1-y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1+y^{2}-\left (y+\sqrt {1+y^{2}}\right ) \left (x^{2}+1\right )^{{3}/{2}} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (x \right ) \cos \left (y\right )-\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (y-x \right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2 \sqrt {x y}-x \right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y-\sqrt {x^{2}+y^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x -y+1+\left (2 y-1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {x y}{x^{2}+1} = \frac {1}{2 x \left (x^{2}+1\right )}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (-x^{2}+1\right ) y^{\prime }+\left (2 x^{2}-1\right ) y = a \,x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {y}{\left (-x^{2}+1\right )^{{3}/{2}}} = \frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime }+y = \arctan \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-x^{2}+1\right ) z^{\prime }-x z = a x z^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 z^{2} z^{\prime }-a z^{3} = 1+x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} z^{\prime }+2 x z = 2 a \,x^{3} z^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} z^{\prime }+z \cos \left (x \right ) = z^{n} \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+y = y^{2} \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3}+3 x y^{2}+\left (y^{3}+3 x^{2} y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1+\frac {y^{2}}{x^{2}}-\frac {2 y y^{\prime }}{x} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {3 x}{y^{3}}+\left (\frac {1}{y^{2}}-\frac {3 x^{2}}{y^{4}}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x +y y^{\prime }+\frac {x y^{\prime }}{x^{2}+y^{2}}-\frac {y}{x^{2}+y^{2}} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {\mathrm e}^{x} \left (x^{2}+y^{2}+2 x \right )+2 y \,{\mathrm e}^{x} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} n \cos \left (n x +m y\right )-m \sin \left (m x +n y\right )+\left (m \cos \left (n x +m y\right )-n \sin \left (m x +n y\right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {x}{\sqrt {x^{2}+y^{2}+1}}+\frac {y y^{\prime }}{\sqrt {x^{2}+y^{2}+1}}+\frac {y}{x^{2}+y^{2}}-\frac {x y^{\prime }}{x^{2}+y^{2}} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {x^{n} y^{\prime }}{b y^{2}-c \,x^{2 a}}-\frac {a y x^{a -1}}{b y^{2}-c \,x^{2 a}}+x^{a -1} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 x y+\left (y^{2}-2 x^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {1}{x}+\frac {y^{\prime }}{y}+\frac {2}{y}-\frac {2 y^{\prime }}{x} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y = \sqrt {x^{2}+y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+2 x y-y^{2}+\left (y^{2}+2 x y-x^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2}+\left (x^{2}+x y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (\cos \left (\frac {y}{x}\right ) x +y \sin \left (\frac {y}{x}\right )\right ) y+\left (\cos \left (\frac {y}{x}\right ) x -y \sin \left (\frac {y}{x}\right )\right ) x y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2} y^{2}+x y\right ) y+\left (x^{2} y^{2}-1\right ) x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{3} y^{3}+x^{2} y^{2}+x y+1\right ) y+\left (x^{3} y^{3}-x^{2} y^{2}-x y+1\right ) x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y y^{\prime }+2 x +x^{2}+y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+y^{2}-2 y y^{\prime } x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y+\left (y^{2}-3 x^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y+\left (-x +2 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-a y+y^{2} = x^{-2 a}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }-a y+y^{2} = x^{-\frac {2 a}{3}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} u^{\prime }+u^{2} = \frac {c}{x^{{4}/{3}}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} u^{\prime }+b u^{2} = \frac {c}{x^{4}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} u^{\prime }-u^{2} = \frac {2}{x^{{8}/{3}}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {\sqrt {f \,x^{4}+c \,x^{3}+c \,x^{2}+b x +a}\, y^{\prime }}{\sqrt {a +b y+c y^{2}+c y^{3}+f y^{4}}} = -1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}-5 y^{\prime }+6 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}-\frac {a^{2}}{x^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2} = \frac {1-x}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}+\frac {2 x y^{\prime }}{y}-1 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = a y^{\prime }+b {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x = a y^{\prime }+b {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = \sqrt {1+{y^{\prime }}^{2}}+a y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x = \sqrt {1+{y^{\prime }}^{2}}+a y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-\frac {\sqrt {1+{y^{\prime }}^{2}}}{x} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} \left (1+{y^{\prime }}^{2}\right )^{3}-a^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1+{y^{\prime }}^{2} = \frac {\left (x +a \right )^{2}}{2 a x +x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = x y^{\prime }+y^{\prime }-{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = x y^{\prime }+\sqrt {b^{2}-a^{2} {y^{\prime }}^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = x y^{\prime }+x \sqrt {1+{y^{\prime }}^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = x y^{\prime }+a x \sqrt {1+{y^{\prime }}^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x -y y^{\prime } = a {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|