| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y-x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \left (1+x \right ) = p y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 x^{2} y^{\prime }+x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-x y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }-x y^{\prime }+y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }+\frac {3 y^{\prime }}{x +2}+\frac {\left (1-x \right )^{2} y}{x +3} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {y^{\prime \prime }}{x}+\frac {3 \left (x -4\right ) y^{\prime }}{x +6}+\frac {x^{2} \left (x -2\right ) y}{x -1} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} \left (x -2\right ) y^{\prime \prime }+4 \left (x -2\right ) y^{\prime }+3 y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+x y = 0
\]
|
✓ |
✗ |
✓ |
|
| \[
{} x^{2} \left (x -2\right ) y^{\prime \prime }+4 \left (x -2\right ) y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x y^{\prime \prime }+2 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\frac {y}{4 x^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+2 y^{\prime }+x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\frac {y^{\prime }}{2 x}-\frac {\left (1+x \right ) y}{2 x^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}-1\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x \left (1+x \right ) y^{\prime \prime }+3 y^{\prime } \left (1+x \right )-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-x \left (1+x \right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }-\left (x +4\right ) y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 n y-2 x y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-5 y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y = t \,{\mathrm e}^{2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-3 y^{\prime }-4 y = t^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-3 y^{\prime }-2 y = {\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = \delta \left (t -1\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+13 y = \delta \left (t -1\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+6 y^{\prime }+18 y = 2 \operatorname {Heaviside}\left (\pi -t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right )+2 \sin \left (2 t \right ), y^{\prime }\left (t \right ) = -3 x \left (t \right )+2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -4 x \left (t \right )-y \left (t \right )+{\mathrm e}^{-t}, y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )+2 \,{\mathrm e}^{-3 t}]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+2 \cos \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )+3 \sin \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -4 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 3 x \left (t \right ), y^{\prime }\left (t \right ) = -2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -y \left (t \right ), y^{\prime }\left (t \right ) = -5 x \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = -3 x \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = -3 x \left (t \right )+2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -y \left (t \right ), y^{\prime }\left (t \right ) = -5 x \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = -3 x \left (t \right )+2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -4 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 12 x \left (t \right )-15 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-4 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )-2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 4 x \left (t \right )-13 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-6 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 4 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+3 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 3 x \left (t \right )+5 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 8 x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = 16 x \left (t \right )+8 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-3 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 5 x \left (t \right )+4 y \left (t \right )+2 z \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )+5 y \left (t \right )+2 z \left (t \right ), z^{\prime }\left (t \right ) = 2 x \left (t \right )+2 y \left (t \right )+2 z \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right )+{\mathrm e}^{t}, y^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )+t]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 5 x \left (t \right )+3 y \left (t \right )+1, y^{\prime }\left (t \right ) = -6 x \left (t \right )-4 y \left (t \right )+{\mathrm e}^{t}]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right )+\cos \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )-2 y \left (t \right )+\sin \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = k y-c y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}-6 y-16
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \cos \left (y\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = y \left (y-2\right ) \left (3+y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2} \left (1+y\right ) \left (y-4\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y-y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y-y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y-y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y-y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y-\mu y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y \left (\mu -y\right ) \left (\mu -2 y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \mu -x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = x-\frac {\mu x}{1+x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = x^{3}+a x^{2}-b x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {1+y}{x +2}-{\mathrm e}^{\frac {1+y}{x +2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {1+y}{x +2}+{\mathrm e}^{\frac {1+y}{x +2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {x +y+1}{x +2}-{\mathrm e}^{\frac {x +y+1}{x +2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {x +2 y+1}{2 x +2+y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {2 x +y+1}{x +2 y+2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 3 y^{{2}/{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sqrt {y \left (1-y\right )}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {{\mathrm e}^{-y^{2}}}{y \left (x^{2}+2 x \right )}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y \ln \left (y\right )}{\sin \left (x \right )}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {\cos \left (x \right )}{\cos \left (y\right )^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (x -y+3\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {2 y \left (y-1\right )}{x \left (2-y\right )}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = x y^{\prime }-\sqrt {x^{2}+y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = f \left (x \right ) y \ln \left (\frac {1}{y}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-y+y^{2} {\mathrm e}^{x}+5 \,{\mathrm e}^{-x} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \cos \left (x +y^{2}\right )+3 y+\left (2 y \cos \left (x +y^{2}\right )+3 x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{2}-y^{3}+\left (1-x y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x y+1\right ) y = x y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+p \left (x \right ) y = q \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = x y^{\prime }-\sqrt {y^{\prime }-1}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = x y^{\prime }+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = x y^{\prime }+a y^{\prime }+b
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = x {y^{\prime }}^{2}+\ln \left ({y^{\prime }}^{2}\right )
\]
|
✓ |
✓ |
✗ |
|