| # | ODE | Mathematica | Maple | Sympy |
| \[
{} x y^{\prime }+2 y-x \cos \left (x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \sqrt {x^{3}+1} = x^{2} y+x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y^{2}+4 x y+\left (x^{2}+2 x y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y \left (x +y\right )
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x \left (x +y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} u^{\prime \prime }+\frac {u^{\prime }}{r} = 4-4 r
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = 1-\left (x -y\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {{\mathrm e}^{x -y}}{y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2}+y y^{\prime } x = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \sqrt {-x^{2}+1}+\sqrt {1-y^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {2}{x +2 y-3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sqrt {\sin \left (x \right )+y}-\cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \tan \left (x +y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = {\mathrm e}^{3 y+x}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime } = 2 y^{\prime \prime \prime }+24 x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{3}+2 x y^{2}+y+\left (y^{2} x^{3}-2 x^{2} y+x \right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}+\left (3 y-2 x \right ) y^{\prime }-6 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {x +y^{2}}{2 y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sqrt {y}+x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \sqrt {\frac {5 x -6 y}{5 x +6 y}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+x y = x^{2}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y+2 y^{4}+\left (x^{3}+3 x y^{3}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {y}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+y^{2}+2 y y^{\prime } x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x y^{2}-2 y+4-4 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y^{2} = x^{2}+1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {y^{2}}{x -1}-\frac {x y}{x -1}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }+2 y = x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+y = \sin \left (x \right )+{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} s^{\prime \prime }+b s^{\prime }+\omega ^{2} s = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-2 x y^{\prime }-y = 1
\]
|
✗ |
✓ |
✓ |
|
| \[
{} 2 y-3 y^{\prime }+y^{\prime \prime } = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y^{\prime \prime \prime } = \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }-4 y = x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-3 y^{\prime }+y^{\prime \prime } = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+y^{\prime }+x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-3 y^{\prime }+y^{\prime \prime } = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-2 y^{\prime \prime }-5 y^{\prime }+6 y = 3 \,{\mathrm e}^{x}-2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-2 y^{\prime }+y^{\prime \prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\left (1-x \right ) y^{\prime }-x y = x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }-5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y^{\prime \prime }-25 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime \prime }-5 y^{\prime \prime }+2 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} i^{\prime \prime }-4 i^{\prime }+2 i = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+2 y^{\prime \prime }-5 y^{\prime }-6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-3 y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-16 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+5 y^{\prime \prime }+2 y^{\prime }-12 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-\left (m_{1} +m_{2} \right ) y^{\prime }+m_{1} m_{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-20 y^{\prime \prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-20 y^{\prime \prime \prime }-16 y^{\prime \prime }+12 y^{\prime }+12 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y-4 y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 16 y^{\prime \prime }-8 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 i^{\prime \prime }-12 i^{\prime }+9 i = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (6\right )}-4 y^{\prime \prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y^{\prime \prime \prime \prime }-20 y^{\prime \prime }+25 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-2 y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} s^{\prime \prime }+16 s^{\prime }+64 s = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 5 y+4 y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y^{\prime \prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y^{\prime \prime }-8 y^{\prime }+7 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+16 y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime \prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} u^{\prime \prime }+16 u = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} i^{\prime \prime }+2 i^{\prime }+5 i = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (6\right )}-64 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y a^{2} b^{2}+\left (a^{2}+b^{2}\right ) y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+6 y^{\prime \prime }+25 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (6\right )}-4 y^{\prime \prime }+4 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} s^{\prime \prime \prime \prime }+2 s^{\prime \prime }-8 s = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (5\right )}-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-6 y^{\prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }-3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-3 y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (-n^{2}+x^{2}\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y-2 y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|