| # | ODE | Mathematica | Maple | Sympy |
| \[
{} 4 y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime \prime } = y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+{y^{\prime }}^{2} = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = \left (1+y\right ) y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+x y^{\prime } = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime } = \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (5\right )}+2 y^{\prime \prime \prime \prime } = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime \prime }+y^{\prime \prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime \prime \prime }}^{2} = {y^{\prime \prime }}^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1+{y^{\prime }}^{2}+y y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = -\frac {4}{y^{3}}
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = x y^{\prime }-{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = x y^{\prime }+1+4 {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = x y^{\prime }-\tan \left (y^{\prime }\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = x y^{\prime }+\sqrt {1+{y^{\prime }}^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 3 y^{{2}/{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sqrt {y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = \tan \left (x \right ) y^{\prime }-{y^{\prime }}^{2} \sec \left (x \right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}+1\right ) \left (y^{3}-1\right ) = x^{2} y^{2} y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2 x y+y^{2}\right ) \left (x^{2}+2 x y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2 x y+y^{2}\right ) \left (x^{2}+2 x y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {2 y}{x} = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3-y+2 x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 x = 2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} s^{2} t s^{\prime }+t^{2}+4 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+y^{2}+2 y y^{\prime } x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (2 x^{2}-y \,{\mathrm e}^{x}\right ) {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y+x^{2} y^{\prime } = 1+x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y}{x}+\arctan \left (\frac {y}{x}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x +y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+x y = x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (3-x^{2} y\right ) y^{\prime } = x y^{2}+4
\]
|
✓ |
✓ |
✗ |
|
| \[
{} r^{2} \sin \left (t \right ) = \left (2 r \cos \left (t \right )+10\right ) r^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x^{2}+2 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {2 x y-y^{4}}{3 x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+y^{2}+2 y y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+y^{2}+\left (2 x y-3\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } \left (y^{2}+2 x \right ) = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} u^{2} v-\left (u^{3}+v^{3}\right ) v^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \tan \left (y\right )-\tan \left (y\right )^{2} \cos \left (x \right )-x \sec \left (y\right )^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {2 y+x}{y-2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \sin \left (x \right ) = y \cos \left (x \right )+\sin \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}-y^{2}+2 y y^{\prime } x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x^{2}-y \,{\mathrm e}^{x}-{\mathrm e}^{x} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x +y\right ) y^{\prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x +2 y+x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (y\right )+\left (x \cos \left (y\right )-y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = {\mathrm e}^{\frac {y}{x}}+\frac {y}{x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = x^{3}+2 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x y^{2}+2+2 x^{2} y y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2 y^{2}-x \right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = y^{\prime }+2 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1+y\right ) y^{\prime } = x \sqrt {y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \tan \left (x \right ) \sin \left (y\right )+3 y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }-y = \cos \left (\frac {y}{x}\right ) x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} s^{\prime } = \sqrt {\frac {1-t}{1-s}}
\]
|
✓ |
✗ |
✓ |
|
| \[
{} 2 y+3 x +x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y+\left (x^{3}+1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (\sin \left (y\right )-x \right ) y^{\prime } = y+2 x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} n^{\prime } = -a n
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y \left (x +y\right )}{x \left (x -y\right )}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} i^{\prime }+i = {\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+y = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y = x^{2} y y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} q^{\prime } = \frac {p \,{\mathrm e}^{p^{2}-q^{2}}}{q}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (3 y \cos \left (x \right )+2\right ) y^{\prime } = \sin \left (x \right ) y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x +x \cos \left (y\right )\right ) y^{\prime }-\sin \left (y\right )-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 3 x +2 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2} = \left (x^{2}+2 x y\right ) y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} r^{\prime } = \frac {r \left (1+\ln \left (t \right )\right )}{t \left (1+\ln \left (r\right )\right )}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} u^{\prime } = -a \left (u-100 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} u v-2 v+\left (-u^{2}+u \right ) v^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} i^{\prime }+3 i = 10 \sin \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} s^{\prime } = \frac {1}{s+t +1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime \prime }+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y \cot \left (x \right ) = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {\left (3+y\right )^{2}}{4 x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-3 y = x^{4} {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x}{y}+\frac {y}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y = 2 x^{2} y^{2} y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }+y \ln \left (x \right ) = y \ln \left (y\right )+y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2-\frac {y}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+y^{\prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} i^{\prime } = \frac {i t^{2}}{t^{3}-i^{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left ({\mathrm e}^{y}+x +3\right ) y^{\prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} r^{\prime } = {\mathrm e}^{t}-3 r
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{4} y^{\prime \prime \prime }+1 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {3 y+x}{x -3 y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \cos \left (x \right ) y^{\prime } = y-\sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {\mathrm e}^{2 x -y}+{\mathrm e}^{y-2 x} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} r^{3} r^{\prime } = \sqrt {a^{8}-r^{8}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x^{2}-y \,{\mathrm e}^{x}-{\mathrm e}^{x} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|