6.227 Problems 22601 to 22700

Table 6.453: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

22601

\[ {} 4 y+y^{\prime \prime } = 0 \]

22602

\[ {} x y^{\prime \prime }+2 y = 0 \]

22603

\[ {} -y+y^{\prime \prime } = 0 \]

22604

\[ {} y y^{\prime \prime } = y^{\prime } \]

22605

\[ {} y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

22606

\[ {} y^{\prime \prime } = \left (1+y\right ) y^{\prime } \]

22607

\[ {} y^{\prime \prime }+x y^{\prime } = x \]

22608

\[ {} y^{\prime \prime \prime \prime } = \ln \left (x \right ) \]

22609

\[ {} y^{\left (5\right )}+2 y^{\prime \prime \prime \prime } = x \]

22610

\[ {} x y^{\prime \prime \prime }+y^{\prime \prime } = 1 \]

22611

\[ {} {y^{\prime \prime \prime }}^{2} = {y^{\prime \prime }}^{3} \]

22612

\[ {} y^{\prime \prime \prime }-y^{\prime } = 0 \]

22613

\[ {} 1+{y^{\prime }}^{2}+y y^{\prime \prime } = 0 \]

22614

\[ {} 2 x y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = 1 \]

22615

\[ {} y^{\prime \prime } = -\frac {4}{y^{3}} \]

22616

\[ {} y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

22617

\[ {} y = x y^{\prime }-{y^{\prime }}^{2} \]

22618

\[ {} y = x y^{\prime }+1+4 {y^{\prime }}^{2} \]

22619

\[ {} y = x y^{\prime }-\tan \left (y^{\prime }\right ) \]

22620

\[ {} y = x y^{\prime }+\sqrt {1+{y^{\prime }}^{2}} \]

22621

\[ {} y^{\prime } = 3 y^{{2}/{3}} \]

22622

\[ {} y^{\prime } = \sqrt {y} \]

22623

\[ {} y = \tan \left (x \right ) y^{\prime }-{y^{\prime }}^{2} \sec \left (x \right )^{2} \]

22624

\[ {} \left (x^{2}+1\right ) \left (y^{3}-1\right ) = x^{2} y^{2} y^{\prime } \]

22625

\[ {} \left (2 x y+y^{2}\right ) \left (x^{2}+2 x y\right ) y^{\prime } = 0 \]

22626

\[ {} \left (2 x y+y^{2}\right ) \left (x^{2}+2 x y\right ) y^{\prime } = 0 \]

22627

\[ {} y^{\prime }+\frac {2 y}{x} = x^{2} \]

22628

\[ {} 3-y+2 x y^{\prime } = 0 \]

22629

\[ {} y^{\prime }+2 x = 2 \]

22630

\[ {} s^{2} t s^{\prime }+t^{2}+4 = 0 \]

22631

\[ {} x^{2}+y^{2}+2 y y^{\prime } x = 0 \]

22632

\[ {} y^{\prime } = \left (2 x^{2}-y \,{\mathrm e}^{x}\right ) {\mathrm e}^{-x} \]

22633

\[ {} x y+x^{2} y^{\prime } = 1+x \]

22634

\[ {} y^{\prime } = \frac {y}{x}+\arctan \left (\frac {y}{x}\right ) \]

22635

\[ {} y^{\prime } = x +y \]

22636

\[ {} y^{\prime }+x y = x^{3} \]

22637

\[ {} \left (3-x^{2} y\right ) y^{\prime } = x y^{2}+4 \]

22638

\[ {} r^{2} \sin \left (t \right ) = \left (2 r \cos \left (t \right )+10\right ) r^{\prime } \]

22639

\[ {} y^{\prime } = x^{2}+2 y \]

22640

\[ {} y^{\prime } = \frac {2 x y-y^{4}}{3 x^{2}} \]

22641

\[ {} x^{2}+y^{2}+2 y y^{\prime } = 0 \]

22642

\[ {} x^{2}+y^{2}+\left (2 x y-3\right ) y^{\prime } = 0 \]

22643

\[ {} y^{\prime } \left (y^{2}+2 x \right ) = y \]

22644

\[ {} u^{2} v-\left (u^{3}+v^{3}\right ) v^{\prime } = 0 \]

22645

\[ {} \tan \left (y\right )-\tan \left (y\right )^{2} \cos \left (x \right )-x \sec \left (y\right )^{2} y^{\prime } = 0 \]

22646

\[ {} y^{\prime } = \frac {2 y+x}{y-2 x} \]

22647

\[ {} y^{\prime } \sin \left (x \right ) = y \cos \left (x \right )+\sin \left (x \right )^{2} \]

22648

\[ {} x^{2}-y^{2}+2 y y^{\prime } x = 0 \]

22649

\[ {} 2 x^{2}-y \,{\mathrm e}^{x}-{\mathrm e}^{x} y^{\prime } = 0 \]

22650

\[ {} \left (x +y\right ) y^{\prime } = 1 \]

22651

\[ {} x +2 y+x y^{\prime } = 0 \]

22652

\[ {} \sin \left (y\right )+\left (x \cos \left (y\right )-y\right ) y^{\prime } = 0 \]

22653

\[ {} y^{\prime } = {\mathrm e}^{\frac {y}{x}}+\frac {y}{x} \]

22654

\[ {} \sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

22655

\[ {} x y^{\prime } = x^{3}+2 y \]

22656

\[ {} 3 x y^{2}+2+2 x^{2} y y^{\prime } = 0 \]

22657

\[ {} \left (2 y^{2}-x \right ) y^{\prime }+y = 0 \]

22658

\[ {} y^{\prime \prime } = y^{\prime }+2 x \]

22659

\[ {} \left (1+y\right ) y^{\prime } = x \sqrt {y} \]

22660

\[ {} \tan \left (x \right ) \sin \left (y\right )+3 y^{\prime } = 0 \]

22661

\[ {} x y^{\prime }-y = \cos \left (\frac {y}{x}\right ) x \]

22662

\[ {} s^{\prime } = \sqrt {\frac {1-t}{1-s}} \]

22663

\[ {} 2 y+3 x +x y^{\prime } = 0 \]

22664

\[ {} x^{2} y+\left (x^{3}+1\right ) y^{\prime } = 0 \]

22665

\[ {} \left (\sin \left (y\right )-x \right ) y^{\prime } = y+2 x \]

22666

\[ {} n^{\prime } = -a n \]

22667

\[ {} y^{\prime } = \frac {y \left (x +y\right )}{x \left (x -y\right )} \]

22668

\[ {} i^{\prime }+i = {\mathrm e}^{t} \]

22669

\[ {} x y^{\prime }+y = x^{2} \]

22670

\[ {} x y^{\prime }-y = x^{2} y y^{\prime } \]

22671

\[ {} q^{\prime } = \frac {p \,{\mathrm e}^{p^{2}-q^{2}}}{q} \]

22672

\[ {} \left (3 y \cos \left (x \right )+2\right ) y^{\prime } = \sin \left (x \right ) y^{2} \]

22673

\[ {} \left (x +x \cos \left (y\right )\right ) y^{\prime }-\sin \left (y\right )-y = 0 \]

22674

\[ {} y^{\prime } = 3 x +2 y \]

22675

\[ {} y^{2} = \left (x^{2}+2 x y\right ) y^{\prime } \]

22676

\[ {} r^{\prime } = \frac {r \left (1+\ln \left (t \right )\right )}{t \left (1+\ln \left (r\right )\right )} \]

22677

\[ {} u^{\prime } = -a \left (u-100 t \right ) \]

22678

\[ {} u v-2 v+\left (-u^{2}+u \right ) v^{\prime } = 0 \]

22679

\[ {} i^{\prime }+3 i = 10 \sin \left (t \right ) \]

22680

\[ {} s^{\prime } = \frac {1}{s+t +1} \]

22681

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

22682

\[ {} x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0 \]

22683

\[ {} y^{\prime }+y \cot \left (x \right ) = \cos \left (x \right ) \]

22684

\[ {} y^{\prime } = \frac {\left (3+y\right )^{2}}{4 x^{2}} \]

22685

\[ {} x y^{\prime }-3 y = x^{4} {\mathrm e}^{-x} \]

22686

\[ {} y^{\prime } = \frac {x}{y}+\frac {y}{x} \]

22687

\[ {} x y^{\prime }-y = 2 x^{2} y^{2} y^{\prime } \]

22688

\[ {} x y^{\prime }+y \ln \left (x \right ) = y \ln \left (y\right )+y \]

22689

\[ {} y^{\prime } = 2-\frac {y}{x} \]

22690

\[ {} x y^{\prime \prime }+y^{\prime } = 1 \]

22691

\[ {} i^{\prime } = \frac {i t^{2}}{t^{3}-i^{3}} \]

22692

\[ {} \left ({\mathrm e}^{y}+x +3\right ) y^{\prime } = 1 \]

22693

\[ {} r^{\prime } = {\mathrm e}^{t}-3 r \]

22694

\[ {} y y^{\prime \prime } = {y^{\prime }}^{2} \]

22695

\[ {} x^{4} y^{\prime \prime \prime }+1 = 0 \]

22696

\[ {} y^{\prime } = \frac {3 y+x}{x -3 y} \]

22697

\[ {} \cos \left (x \right ) y^{\prime } = y-\sin \left (2 x \right ) \]

22698

\[ {} {\mathrm e}^{2 x -y}+{\mathrm e}^{y-2 x} y^{\prime } = 0 \]

22699

\[ {} r^{3} r^{\prime } = \sqrt {a^{8}-r^{8}} \]

22700

\[ {} 2 x^{2}-y \,{\mathrm e}^{x}-{\mathrm e}^{x} y^{\prime } = 0 \]