| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime \prime }+3 x^{3} y^{\prime }+x^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{3}+8\right ) y^{\prime \prime }+3 x^{2} y^{\prime }+x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{3}-8\right ) y^{\prime \prime }-4 x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (-x^{4}+1\right ) y^{\prime \prime \prime }-24 x y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (x^{2}+1\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+y^{\prime }-x^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime \prime }-y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{4} y^{\prime \prime \prime }+\frac {x^{2} y^{\prime \prime }}{1+x}-\left (1+x \right ) y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{4} y^{\prime \prime \prime }-\frac {x^{2} y^{\prime }}{1+x}+y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+y^{\prime } \sin \left (x \right )-2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime }-y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x y^{\prime }+\left (1+x \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+5 x y^{\prime }-5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y^{\prime \prime }+y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 25 x^{2} y^{\prime \prime }+\left (2 x +4\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-\left (3 x^{4}+5 x \right ) y^{\prime }+\left (6 x^{3}+5\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 6 x^{2} y^{\prime \prime }+\left (x^{3}+11 x \right ) y^{\prime }+\left (-2 x^{2}+1\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} \left (1+x \right ) y^{\prime \prime }-3 x y^{\prime }+\left (3-2 x \right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+x^{2} y^{\prime }+2 x y = x^{3}-x +3
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+\left (-4 x^{3}+x \right ) y^{\prime }-x^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-5 x y^{\prime }+\left (-x^{2}+9\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+\left (x^{2}-x \right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+5 x y^{\prime }+\left (2 x +4\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+2 y^{\prime }-3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+2 x^{4} y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x^{2} y^{\prime \prime }+8 x y^{\prime }+\left (2 x -3\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 9 x^{2} y^{\prime \prime }+\left (x^{2}-15 x \right ) y^{\prime }+7 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+\left (x^{2}-5 x \right ) y^{\prime }+\left (5-6 x \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = 2 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 y+x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-y = x^{2}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-y = x^{2}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-7 y = -x^{4}+2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1-x \right ) y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (x \right ) \sin \left (y\right )+\cos \left (x \right ) \cos \left (y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{3}+{\mathrm e}^{x^{2}} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-3 x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} m y-n x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} v^{\prime } = -\frac {v}{p}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y \,{\mathrm e}^{2 x}-\left (4+{\mathrm e}^{2 x}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1 = b \left (\cos \left (y\right )+x \sin \left (y\right ) y^{\prime }\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y-\left (x +2\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+y \left (x -1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y+x -\left (1+x^{2}+y^{2}+x^{2} y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \cos \left (y\right )^{2}+\tan \left (y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{3}+\left (1+y\right ) {\mathrm e}^{-x} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \theta ^{\prime } = z \left (-z^{2}+1\right ) \sec \left (\theta \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \sin \left (x\right )^{2} \cos \left (t \right )^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+y+x y \left (1+y^{\prime }\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \cos \left (y\right ) = x y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1+\ln \left (x \right )+\left (1+\ln \left (y\right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x -\sqrt {a^{2}-x^{2}}\, y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x +\sqrt {a^{2}-x^{2}}\, y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} a^{2}-x y^{\prime } \sqrt {-a^{2}+x^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-\left ({\mathrm e}^{3 x}+1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y \ln \left (x \right ) \ln \left (y\right )+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } x -y^{2} = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} r^{\prime } = -2 r t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{2}+{\mathrm e}^{x} y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (2 a^{2}-r^{2}\right ) r^{\prime } = r^{3} \sin \left (\theta \right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = x \,{\mathrm e}^{-y-x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} v v^{\prime } = g
\]
|
✓ |
✗ |
✓ |
|
| \[
{} \left (y+2 x \right ) y^{\prime }+x -2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y-\left (x^{2}+2 y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{2}+4 x^{2}-y y^{\prime } x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x^{2}+x y-2 y^{2}-\left (x^{2}-4 x y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+2 y^{2}-y y^{\prime } x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x -y\right ) \left (4 x +y\right )+x \left (5 x -y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 5 v-u +\left (3 v-7 u \right ) v^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+2 x y-4 y^{2}-\left (x^{2}-8 x y-4 y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+2 x y-4 y^{2}-\left (x^{2}-8 x y-4 y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (x^{2}+y^{2}\right )^{2} \left (y-x y^{\prime }\right )+y^{6} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } x +x^{2}+y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y-\left (2 y+x \right )^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} v^{2}+x \left (x +v\right ) v^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \csc \left (\frac {y}{x}\right )-y+x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x +\sin \left (\frac {y}{x}\right )^{2} \left (y-x y^{\prime }\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x -y \ln \left (y\right )+y \ln \left (x \right )+x \left (\ln \left (y\right )-\ln \left (x \right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x -y \arctan \left (\frac {y}{x}\right )+x \arctan \left (\frac {y}{x}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2} y^{\prime } = x \left (x y^{\prime }-y\right ) {\mathrm e}^{\frac {x}{y}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t \left (s^{2}+t^{2}\right ) s^{\prime }-s \left (s^{2}-t^{2}\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y-\left (x +\sqrt {-x^{2}+y^{2}}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x -y+\left (3 x +y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y-\sqrt {x^{2}+y^{2}}-x y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y+\sqrt {x^{2}+y^{2}}-x y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x \cos \left (\frac {y}{x}\right )^{2}-y+x y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2}+7 x y+16 x^{2}+x^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2}+\left (x^{2}+3 x y+4 y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y+2 \left (x^{2}+2 y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y \left (2 x^{2}-x y+y^{2}\right )-x^{2} \left (2 x -y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y \left (9 x -2 y\right )-x \left (6 x -y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y \left (x^{2}+y^{2}\right )+x \left (3 x^{2}-5 y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 16 x +15 y+\left (3 x +y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} v \left (3 x +2 v\right )-x^{2} v^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -2 x y+\left (3 x^{2}-2 y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x +y+\left (x -y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 6 x +y^{2}+y \left (2 x -3 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|