| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }-2 y = 2 \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-9 y = {\mathrm e}^{x}+3 \,{\mathrm e}^{-3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-2 y^{\prime }+y^{\prime \prime } = 1+2 x +3 \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-\left (m_{1} +m_{2} \right ) y^{\prime }+m_{1} m_{2} y = {\mathrm e}^{m x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (8\right )}-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-3 y = {\mathrm e}^{-2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y^{\prime \prime } = x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y-4 y^{\prime }+y^{\prime \prime } = x +{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (5\right )}-y^{\prime \prime \prime \prime }+2 y^{\prime }-y = x^{4}-2 x +1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime } = {\mathrm e}^{x}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = x^{4} {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (6\right )}+3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }+y = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = x -{\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }-2 y = \cosh \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime }-y = x^{n}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = 4 \,{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sec \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \csc \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y-4 y^{\prime }+y^{\prime \prime } = \frac {{\mathrm e}^{2 x}}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime } = f \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-x y^{\prime }+y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-x y^{\prime }+y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{3 x} \sin \left (3 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 2 x \,{\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-2 y^{\prime }+y^{\prime \prime } = \frac {{\mathrm e}^{x} \ln \left (x \right )}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = {\mathrm e}^{x} \sin \left (x \right ) x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+3 k y^{\prime \prime }+3 k^{2} y^{\prime }+k^{3} y = {\mathrm e}^{-k x} f^{\prime \prime \prime }\left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{2 x} \sec \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime }-2 y = 2+x +x \,{\mathrm e}^{-x}+x^{2} {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -4 y^{\prime }+y^{\prime \prime \prime } = x^{2}-x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+4 y^{\prime \prime } = {\mathrm e}^{-4 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-3 y^{\prime }+y^{\prime \prime } = x \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+y^{\prime \prime } = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (6\right )}+y^{\prime \prime \prime \prime }-y = 4 x^{5}-6 x^{2}+2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (8\right )}+y = x^{15}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }-2 y = x^{2}+4 x +3
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y = -x^{6}+x^{4}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+5 y^{\prime }+6 y = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (8\right )}+8 y^{\left (7\right )}+28 y^{\left (6\right )}+56 y^{\left (5\right )}+70 y^{\prime \prime \prime \prime }+56 y^{\prime \prime \prime }+28 y^{\prime \prime }+8 y^{\prime } = {\mathrm e}^{-x} x^{9}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-6 y^{\prime }+8 y = x^{2} {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = {\mathrm e}^{2 x} \cos \left (3 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 6 x^{2} y^{\prime \prime }-5 x y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (1+x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-\left (x +2\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+x^{2} y^{\prime }-x y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+x y^{\prime }+\left (3 x -9\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 6
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x^{2} y^{\prime }-x y = 2 x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+p \left (x \right ) y^{\prime }+q \left (x \right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x \left (x -1\right ) y^{\prime \prime }+\left (-x^{2}+2 x +1\right ) y^{\prime }-\left (1+x \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y-2 y^{\prime }+y^{\prime \prime } = 2 \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = x \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y = {\mathrm e}^{x} \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+16 y = x^{2}-4 \cos \left (3 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+4 y^{\prime \prime } = 16 \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }+54 y^{\prime \prime }-108 y^{\prime }+81 y = x^{2} {\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-y^{\prime }+2 y = -2 x^{4}+x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+4 y^{\prime \prime } = \cosh \left (2 x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }+2 y = 4 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+9 y = 3 x -6
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime } = 2 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (5\right )} = 120
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime }+y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime } = x^{3}+{\mathrm e}^{-2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-2 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{x} \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-x y^{\prime }+2 y = \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime } = x +{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }-2 y = \ln \left (x \right )+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (10\right )}+y = x^{10}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = {\mathrm e}^{x}+{\mathrm e}^{2 x}+{\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right )-x \left (t \right )-y^{\prime }\left (t \right ) = 0, y^{\prime }\left (t \right )+3 x \left (t \right )-2 y \left (t \right ) = 0]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }-4 y = 12 \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-2 y^{\prime }+y^{\prime \prime } = \frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime }-2 y^{\prime \prime }+y = x^{5}+2 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+i y = \cosh \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = x -4
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }-5 y = x^{2} {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y^{\prime }-y = \sinh \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (6\right )}+y = x^{7}+2 x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \cot \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x \left (t \right )-y \left (t \right )+z^{\prime }\left (t \right ) = 0, x^{\prime }\left (t \right )-y \left (t \right ) = 1, y^{\prime }\left (t \right )-y \left (t \right )+z \left (t \right ) = 0]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+a x y^{\prime }+b y = f \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 y^{\prime \prime }+x^{2} y^{\prime }-x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \left (-x^{2}+1\right )+3 x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+20 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+56 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 \left (-x^{2}+1\right ) y^{\prime \prime }-8 x y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+2\right ) y^{\prime \prime }+3 x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|