| # | ODE | Mathematica | Maple | Sympy |
| \[
{} 2 x y-3 x^{2}+\left (y+x^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2}-2 x y+6 x -\left (x^{2}-2 x y+2\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x y-y+\left (x^{2}+x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} v \left (2 u v^{2}-3\right )+\left (3 u^{2} v^{2}-3 u +4 v\right ) v^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \cos \left (2 y\right )-3 x^{2} y^{2}+\left (\cos \left (2 y\right )-2 x \sin \left (2 y\right )-2 x^{3} y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 1+y^{2}+\left (y+x^{2} y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1+y^{2}+x y^{2}+\left (x^{2} y+y+2 x y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} w^{3}+w z^{2}-z+\left (z^{3}+w^{2} z-w \right ) z^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x y-\tan \left (y\right )+\left (x^{2}-x \sec \left (y\right )^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \cos \left (x \right ) \cos \left (y\right )-\cot \left (x \right )-\sin \left (x \right ) \sin \left (y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x +\sin \left (y\right )-\cos \left (y\right )-x \cos \left (y\right ) \left (2 x \sin \left (y\right )+1\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (6+3 x y-4 y^{3}\right ) x +\left (x^{3}-6 x^{2} y^{2}-1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \sin \left (y\right )-2 x \cos \left (y\right )^{2}+x \cos \left (y\right ) \left (2 x \sin \left (y\right )+1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x +y \cos \left (x y\right )+x \cos \left (x y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x y+\left (x^{2}+y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (-x^{2}+y^{2}\right ) y^{\prime }+2 x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y \cos \left (x^{2}\right )-2 x y+1+\left (\sin \left (x^{2}\right )-x^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{2}+y-x +x \left (x y+1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y \left (x^{2}-1\right )+\left (x^{3}+8 y-3 x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {1}{\left (1-x y\right )^{2}}+\left (y^{2}+\frac {x^{2}}{\left (1-x y\right )^{2}}\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y \,{\mathrm e}^{x y}-2 y^{3}+\left (x \,{\mathrm e}^{x y}-6 x y^{2}-2 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y \left (2 x y+1\right )-x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y \left (y^{3}-x \right )+x \left (y^{3}+x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{3} y^{3}+1+x^{4} y^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} s \left (2+s^{2} t \right )+2 t s^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y \left (x^{4}-y^{2}\right )+x \left (x^{4}+y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y \left (1+y^{2}\right )+x \left (y^{2}-1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{3}-y^{5}\right ) y-x \left (x^{3}+y^{5}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (-y^{2}+x^{2}+1\right ) y-x \left (-y^{2}+x^{2}-1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{3}+x y^{2}+y+\left (y^{3}+x^{2} y+x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y \left (y^{2}+x^{2}-1\right )+x \left (x^{2}+y^{2}+1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{3}+x y^{2}-y+\left (y^{3}+x^{2} y+x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y \left (x^{3} {\mathrm e}^{x y}-y\right )+x \left (y+x^{3} {\mathrm e}^{x y}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y \left (1+y^{2}\right )+\left (x^{2} y^{2}-2\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-x^{2}+1\right ) y^{2}+x \left (x^{2} y^{2}+2 x +y\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (x^{2} y^{2}-1\right ) y+x \left (x^{2} y+2 x +y\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{4} y^{\prime } = -x^{3} y-\csc \left (x y\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 1+y \tan \left (x y\right )+x \tan \left (x y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y \left (x^{2} y^{2}-m \right )+x \left (x^{2} y^{2}+n \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (x^{2}-y^{2}-x \right )-y \left (x^{2}-y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y \left (y+x^{2}\right )+x \left (x^{2}-2 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y \left (x^{3} y^{3}+2 x^{2}-y\right )+x^{3} \left (x y^{3}-2\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y \left (2-3 x y\right )-x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y \left (y^{2}+2 x \right )+x \left (-x +y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 \left (y^{4}-x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y \left (3 x^{3}-x +y\right )+x^{2} \left (-x^{2}+1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x^{5} y^{\prime } = y \left (3 x^{4}+y^{2}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{n} y^{n +1}+a y+\left (x^{n +1} y^{n}+b x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{n +1} y^{n}+a y+\left (x^{n} y^{n +1}+a x \right ) y^{\prime } = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{4}+2 y-x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x y+3 y-4+\left (1+x \right )^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \csc \left (x \right )-y \cot \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t x^{\prime } = 6 t \,{\mathrm e}^{2 t}+x \left (2 t -1\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x -3 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (3 x -1\right ) y^{\prime } = 6 y-10 \left (3 x -1\right )^{{1}/{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-2+\left (3 x -y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x y+x^{2}+x^{4}-\left (x^{2}+1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x -2 x y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-\cos \left (x \right )^{2}+\cos \left (x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x -2 y \cot \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-x +x y \cot \left (x \right )+x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-m y = c \,{\mathrm e}^{m x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-m_{2} y = c \,{\mathrm e}^{m_{1} x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} v+\left (2 x +1-v x \right ) v^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (x^{2}+1\right ) y^{\prime }+2 y = \left (x^{2}+1\right )^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x \left (y-x^{2}\right )+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1+x y-\left (x^{2}+1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y = \left (x^{2}-1\right ) \left (1-y^{\prime }\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1-\left (1+2 x \tan \left (y\right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (\cos \left (x \right )+1\right ) y^{\prime } = \sin \left (x \right ) \left (\sin \left (x \right )+\cos \left (x \right ) \sin \left (x \right )-y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 1+3 y \tan \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (a^{2}+x^{2}\right ) y^{\prime } = 2 x \left (\left (a^{2}+x^{2}\right )^{2}+3 y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x +a \right ) y^{\prime } = b x -n y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x +a \right ) y^{\prime } = b x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x +a \right ) y^{\prime } = b x +y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2 x +3\right ) y^{\prime } = y+\sqrt {2 x +3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x^{3}-2 x y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} L i^{\prime }+R i = e
\]
|
✓ |
✓ |
✓ |
|
| \[
{} L i^{\prime }+R i = e \sin \left (w t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 4 x -2 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 4 x -2 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (t^{2}+1\right ) s^{\prime }+2 t \left (s t^{2}-3 \left (t^{2}+1\right )^{2}\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = {\mathrm e}^{x +y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+x +y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2}-x \left (2 x +3 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+1+x^{2} y^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3}+y^{3}+y^{2} \left (3 x +k y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime } = x^{2} y^{2}+2 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-\cos \left (x \right ) = \tan \left (y\right )^{2} \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \cos \left (x \right ) y^{\prime } = 1-y-\sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (\theta \right ) r^{\prime } = -1-2 r \cos \left (\theta \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y \left (3 y+x \right )+x^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sec \left (x \right )^{2} \sec \left (y\right )^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (2 x^{3}-x^{2} y+y^{3}\right ) y-x \left (y^{3}+2 x^{3}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime } = y \left (2 x y+1\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y+\sqrt {x^{2}+1}\, y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x -y \cos \left (\frac {y}{x}\right )+x y^{\prime } \cot \left (\frac {y}{x}\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y \left (x^{2}+y^{2}\right )+x \left (3 x^{2}-5 y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+a y = b
\]
|
✓ |
✓ |
✓ |
|