| # | ODE | Mathematica | Maple | Sympy |
| \[
{} 10 f^{\prime }\left (x \right ) y^{\prime }+3 y \left (3 f \left (x \right )^{2}+f^{\prime \prime }\left (x \right )\right )+10 f \left (x \right ) y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{2}-2 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{2}-2 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime } = x^{3}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} -y y^{\prime }+{y^{\prime }}^{2}+y^{\prime \prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} a y y^{\prime \prime }+y^{\prime \prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{2}-\left (1-2 x y\right ) y^{\prime }+x y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = f \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } y^{\prime \prime } = a x {y^{\prime }}^{5}+3 {y^{\prime \prime }}^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \frac {x^{n} y^{\prime }}{b y^{2}-c \,x^{2 a}}-\frac {a y x^{a -1}}{b y^{2}-c \,x^{2 a}}+x^{a -1} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{4} y^{\prime \prime }+x y^{\prime }+y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{3} y^{\prime \prime }-\left (2 x -1\right ) y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+\frac {a y}{x^{{3}/{2}}} = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{3} y^{\prime \prime }+y = x^{{3}/{2}}
\]
|
✓ |
✗ |
✗ |
|
| \[
{} 2 x^{2} y^{\prime \prime }-\left (2+3 x \right ) y^{\prime }+\frac {\left (2 x -1\right ) y}{x} = \sqrt {x}
\]
|
✓ |
✗ |
✗ |
|
| \[
{} s^{\prime } = t \ln \left (s^{2 t}\right )+8 t^{2}
\]
|
✓ |
✗ |
✗ |
|
| \[
{} s^{2}+s^{\prime } = \frac {s+1}{s t}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime }+t x = {\mathrm e}^{x}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x x^{\prime }+x t^{2} = \sin \left (t \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 1+\frac {1}{1+x^{2}+4 x y+y^{2}}+\left (\frac {1}{\sqrt {y}}+\frac {1}{1+x^{2}+2 x y+y^{2}}\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \sqrt {\frac {y}{x}}+\cos \left (x \right )+\left (\sqrt {\frac {x}{y}}+\sin \left (y\right )\right ) y^{\prime } = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+\operatorname {dif} \left (y, t\right )-6 y = 0
\]
|
✓ |
✗ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+3 y^{\prime }-x y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{3} y^{\prime \prime }+y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{3} y^{\prime \prime }+y = \frac {1}{x^{4}}
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x y^{\prime \prime }-2 y^{\prime }+y = \cos \left (x \right )
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime }-\frac {y}{x} = \cos \left (x \right )
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+y^{\prime }+y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{3} y^{\prime \prime }+\left (1+x \right ) y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x y^{\prime \prime \prime }-{y^{\prime }}^{4}+y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} t^{5} y^{\prime \prime \prime \prime }-t^{3} y^{\prime \prime }+6 y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} u^{\prime \prime }+u^{\prime }+u = \cos \left (r +u\right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }-\left (1-\frac {{x^{\prime }}^{2}}{3}\right ) x^{\prime }+x = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \sin \left (x^{\prime }\right )+y^{3} x = \sin \left (y \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+4 y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+4 y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = 6 \sqrt {y}+5 x^{3}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = {\mathrm e}^{-\frac {x y^{2}}{100}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = {\mathrm e}^{-\frac {x y^{2}}{100}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = {\mathrm e}^{-\frac {x y^{2}}{100}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = {\mathrm e}^{-\frac {x y^{2}}{100}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} m^{\prime } = -\frac {k}{m^{2}}
\]
|
✓ |
✗ |
✓ |
|
| \[
{} x y^{\prime }-4 y = x^{6} {\mathrm e}^{x}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{3} y^{\prime \prime }+4 x^{2} y^{\prime }+3 y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{3} \left (x^{2}-25\right ) \left (x -2\right )^{2} y^{\prime \prime }+3 x \left (x -2\right ) y^{\prime }+7 \left (x +5\right ) y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{4} y^{\prime \prime }+\lambda y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{3} y^{\prime \prime }+y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime \prime }-2 x y^{\prime \prime }+4 x^{2} y^{\prime }+8 x^{3} y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+y \,{\mathrm e}^{x} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (\cos \left (x \right )-\sin \left (x \right )\right ) y^{\prime \prime }-2 y^{\prime } \sin \left (x \right )+y \left (\cos \left (x \right )+\sin \left (x \right )\right ) = \left (\cos \left (x \right )-\sin \left (x \right )\right )^{2}
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-5 y^{\prime }+3 x^{2} y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} [y_{1}^{\prime }\left (x \right ) = 3 y_{1} \left (x \right )+x y_{3} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{2} \left (x \right )+x^{3} y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right ) x -y_{2} \left (x \right )+{\mathrm e}^{x} y_{3} \left (x \right )]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x \ln \left (x \right ) y^{\prime }+y = 3 x^{3}
\]
|
✗ |
✗ |
✓ |
|
| \[
{} \sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime } = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} 2 y^{2}-4 x +5 = \left (4-2 y+4 x y\right ) y^{\prime }
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x y y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime }
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{2} y^{\prime } = y
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{3} \left (x -1\right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+3 x y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+\left (2-x \right ) y^{\prime } = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{4} y^{\prime \prime }+\sin \left (x \right ) y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}-\frac {y}{x^{3}} = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} i^{\prime \prime }+2 i^{\prime }+3 i = \left \{\begin {array}{cc} 30 & 0<t <2 \pi \\ 0 & 2 \pi \le t \le 5 \pi \\ 10 & 5 \pi <t <\infty \end {array}\right .
\]
|
✓ |
✗ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right ) y \left (t \right )+1, y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = 1+t y \left (t \right ), y^{\prime }\left (t \right ) = -t x \left (t \right )+y \left (t \right )]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = y+x \,{\mathrm e}^{y}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+5 x y^{\prime }+y \sqrt {x} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{3} y^{\prime \prime }+4 x^{2} y^{\prime }+3 y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{3} \left (x^{2}-25\right ) \left (x -2\right )^{2} y^{\prime \prime }+3 x \left (x -2\right ) y^{\prime }+7 \left (x +5\right ) y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{3} y^{\prime \prime }+y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+2 z \left (t \right )+{\mathrm e}^{-t}-3 t, y^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right )+z \left (t \right )+2 \,{\mathrm e}^{-t}+t, z^{\prime }\left (t \right ) = -2 x \left (t \right )+5 y \left (t \right )+6 z \left (t \right )+2 \,{\mathrm e}^{-t}-t]
\]
|
✓ |
✗ |
✗ |
|
| \[
{} 2 y^{\prime \prime } = \sin \left (2 y\right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 y^{\prime \prime } = \sin \left (2 y\right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = \sqrt {-y^{2}-x^{2}+1}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime \prime } = x
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 3 y y^{\prime \prime } = \sin \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{3} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }-x^{3} y^{\prime }-x y-x^{3}-x^{2} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{4}-x^{3} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime \prime }+y {y^{\prime }}^{2} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 1+x
\]
|
✓ |
✗ |
✗ |
|
| \[
{} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x
\]
|
✓ |
✗ |
✗ |
|
| \[
{} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2}+x +1
\]
|
✓ |
✗ |
✗ |
|
| \[
{} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \sin \left (x \right )
\]
|
✓ |
✗ |
✗ |
|
| \[
{} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \sin \left (x \right )+1
\]
|
✓ |
✗ |
✗ |
|
| \[
{} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \cos \left (x \right )+\sin \left (x \right )
\]
|
✓ |
✗ |
✗ |
|
| \[
{} 2 x^{2} y^{\prime \prime }+2 x y^{\prime }-x y = 1
\]
|
✓ |
✗ |
✗ |
|
| \[
{} {y^{\prime }}^{2}+y^{2} = \sec \left (x \right )^{4}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \frac {x y^{\prime \prime }}{-x^{2}+1}+y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime }+y = \frac {1}{x}
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime }+y = \frac {1}{x^{2}}
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime } = \frac {1}{x}
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = \frac {1}{x}
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+y^{\prime } = \frac {1}{x}
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+y = \frac {1}{x}
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+y^{\prime }+y = \frac {1}{x}
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime } = \frac {x y+3 x -2 y+6}{x y-3 x -2 y+6}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = \cos \left (x \right )+\frac {y^{2}}{x}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} t y^{\prime }+y = \sin \left (t \right )
\]
|
✓ |
✗ |
✓ |
|