5.2.3 Problems 201 to 300

Table 5.31: Problems not solved by Maple

#

ODE

Mathematica

Maple

Sympy

6757

\[ {} 10 f^{\prime }\left (x \right ) y^{\prime }+3 y \left (3 f \left (x \right )^{2}+f^{\prime \prime }\left (x \right )\right )+10 f \left (x \right ) y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

6760

\[ {} y^{2}-2 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

6761

\[ {} y^{2}-2 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime } = x^{3} \]

6801

\[ {} -y y^{\prime }+{y^{\prime }}^{2}+y^{\prime \prime \prime } = 0 \]

6802

\[ {} a y y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

6803

\[ {} y^{2}-\left (1-2 x y\right ) y^{\prime }+x y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = f \left (x \right ) \]

6812

\[ {} y^{\prime } y^{\prime \prime } = a x {y^{\prime }}^{5}+3 {y^{\prime \prime }}^{2} \]

6865

\[ {} \frac {x^{n} y^{\prime }}{b y^{2}-c \,x^{2 a}}-\frac {a y x^{a -1}}{b y^{2}-c \,x^{2 a}}+x^{a -1} = 0 \]

7180

\[ {} x^{4} y^{\prime \prime }+x y^{\prime }+y = 0 \]

7193

\[ {} x^{3} y^{\prime \prime }-\left (2 x -1\right ) y = 0 \]

7197

\[ {} y^{\prime \prime }+\frac {a y}{x^{{3}/{2}}} = 0 \]

7201

\[ {} x^{3} y^{\prime \prime }+y = x^{{3}/{2}} \]

7202

\[ {} 2 x^{2} y^{\prime \prime }-\left (2+3 x \right ) y^{\prime }+\frac {\left (2 x -1\right ) y}{x} = \sqrt {x} \]

7393

\[ {} s^{\prime } = t \ln \left (s^{2 t}\right )+8 t^{2} \]

7396

\[ {} s^{2}+s^{\prime } = \frac {s+1}{s t} \]

7430

\[ {} x^{\prime }+t x = {\mathrm e}^{x} \]

7433

\[ {} x x^{\prime }+x t^{2} = \sin \left (t \right ) \]

7544

\[ {} 1+\frac {1}{1+x^{2}+4 x y+y^{2}}+\left (\frac {1}{\sqrt {y}}+\frac {1}{1+x^{2}+2 x y+y^{2}}\right ) y^{\prime } = 0 \]

7558

\[ {} \sqrt {\frac {y}{x}}+\cos \left (x \right )+\left (\sqrt {\frac {x}{y}}+\sin \left (y\right )\right ) y^{\prime } = 0 \]

7618

\[ {} y^{\prime \prime }+y = 0 \]

7632

\[ {} y^{\prime \prime }+\operatorname {dif} \left (y, t\right )-6 y = 0 \]

7634

\[ {} x^{2} y^{\prime \prime }+3 y^{\prime }-x y = 0 \]

7847

\[ {} x^{3} y^{\prime \prime }+y = 0 \]

8129

\[ {} x^{3} y^{\prime \prime }+y = \frac {1}{x^{4}} \]

8130

\[ {} x y^{\prime \prime }-2 y^{\prime }+y = \cos \left (x \right ) \]

8131

\[ {} y^{\prime }-\frac {y}{x} = \cos \left (x \right ) \]

8150

\[ {} x^{2} y^{\prime \prime }+y^{\prime }+y = 0 \]

8155

\[ {} x^{3} y^{\prime \prime }+\left (1+x \right ) y = 0 \]

8163

\[ {} x y^{\prime \prime \prime }-{y^{\prime }}^{4}+y = 0 \]

8164

\[ {} t^{5} y^{\prime \prime \prime \prime }-t^{3} y^{\prime \prime }+6 y = 0 \]

8165

\[ {} u^{\prime \prime }+u^{\prime }+u = \cos \left (r +u\right ) \]

8168

\[ {} x^{\prime \prime }-\left (1-\frac {{x^{\prime }}^{2}}{3}\right ) x^{\prime }+x = 0 \]

8170

\[ {} \sin \left (x^{\prime }\right )+y^{3} x = \sin \left (y \right ) \]

8257

\[ {} y^{\prime \prime }+4 y = 0 \]

8262

\[ {} y^{\prime \prime }+4 y = 0 \]

8281

\[ {} y^{\prime } = 6 \sqrt {y}+5 x^{3} \]

8304

\[ {} y^{\prime } = {\mathrm e}^{-\frac {x y^{2}}{100}} \]

8305

\[ {} y^{\prime } = {\mathrm e}^{-\frac {x y^{2}}{100}} \]

8306

\[ {} y^{\prime } = {\mathrm e}^{-\frac {x y^{2}}{100}} \]

8307

\[ {} y^{\prime } = {\mathrm e}^{-\frac {x y^{2}}{100}} \]

8420

\[ {} m^{\prime } = -\frac {k}{m^{2}} \]

8482

\[ {} x y^{\prime }-4 y = x^{6} {\mathrm e}^{x} \]

8510

\[ {} x^{3} y^{\prime \prime }+4 x^{2} y^{\prime }+3 y = 0 \]

8518

\[ {} x^{3} \left (x^{2}-25\right ) \left (x -2\right )^{2} y^{\prime \prime }+3 x \left (x -2\right ) y^{\prime }+7 \left (x +5\right ) y = 0 \]

8542

\[ {} x^{4} y^{\prime \prime }+\lambda y = 0 \]

8543

\[ {} x^{3} y^{\prime \prime }+y = 0 \]

8544

\[ {} x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

8771

\[ {} y^{\prime \prime \prime }-2 x y^{\prime \prime }+4 x^{2} y^{\prime }+8 x^{3} y = 0 \]

8772

\[ {} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+y \,{\mathrm e}^{x} = 0 \]

8787

\[ {} \left (\cos \left (x \right )-\sin \left (x \right )\right ) y^{\prime \prime }-2 y^{\prime } \sin \left (x \right )+y \left (\cos \left (x \right )+\sin \left (x \right )\right ) = \left (\cos \left (x \right )-\sin \left (x \right )\right )^{2} \]

8996

\[ {} x^{2} y^{\prime \prime }-5 y^{\prime }+3 x^{2} y = 0 \]

9058

\[ {} [y_{1}^{\prime }\left (x \right ) = 3 y_{1} \left (x \right )+x y_{3} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{2} \left (x \right )+x^{3} y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right ) x -y_{2} \left (x \right )+{\mathrm e}^{x} y_{3} \left (x \right )] \]

9123

\[ {} x \ln \left (x \right ) y^{\prime }+y = 3 x^{3} \]

9137

\[ {} \sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

9139

\[ {} 2 y^{2}-4 x +5 = \left (4-2 y+4 x y\right ) y^{\prime } \]

9192

\[ {} x y y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \]

9372

\[ {} x^{2} y^{\prime } = y \]

9395

\[ {} x^{3} \left (x -1\right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+3 x y = 0 \]

9397

\[ {} x^{2} y^{\prime \prime }+\left (2-x \right ) y^{\prime } = 0 \]

9403

\[ {} x^{4} y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

9413

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}-\frac {y}{x^{3}} = 0 \]

9414

\[ {} x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

9467

\[ {} i^{\prime \prime }+2 i^{\prime }+3 i = \left \{\begin {array}{cc} 30 & 0<t <2 \pi \\ 0 & 2 \pi \le t \le 5 \pi \\ 10 & 5 \pi <t <\infty \end {array}\right . \]

9496

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ) y \left (t \right )+1, y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )] \]

9497

\[ {} [x^{\prime }\left (t \right ) = 1+t y \left (t \right ), y^{\prime }\left (t \right ) = -t x \left (t \right )+y \left (t \right )] \]

9503

\[ {} y^{\prime } = y+x \,{\mathrm e}^{y} \]

9535

\[ {} y^{\prime \prime }+5 x y^{\prime }+y \sqrt {x} = 0 \]

9538

\[ {} x^{3} y^{\prime \prime }+4 x^{2} y^{\prime }+3 y = 0 \]

9546

\[ {} x^{3} \left (x^{2}-25\right ) \left (x -2\right )^{2} y^{\prime \prime }+3 x \left (x -2\right ) y^{\prime }+7 \left (x +5\right ) y = 0 \]

9571

\[ {} x^{3} y^{\prime \prime }+y = 0 \]

9572

\[ {} x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

9673

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+2 z \left (t \right )+{\mathrm e}^{-t}-3 t, y^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right )+z \left (t \right )+2 \,{\mathrm e}^{-t}+t, z^{\prime }\left (t \right ) = -2 x \left (t \right )+5 y \left (t \right )+6 z \left (t \right )+2 \,{\mathrm e}^{-t}-t] \]

9793

\[ {} 2 y^{\prime \prime } = \sin \left (2 y\right ) \]

9794

\[ {} 2 y^{\prime \prime } = \sin \left (2 y\right ) \]

10017

\[ {} y^{\prime } = \sqrt {-y^{2}-x^{2}+1} \]

10061

\[ {} y y^{\prime \prime } = x \]

10064

\[ {} 3 y y^{\prime \prime } = \sin \left (x \right ) \]

10133

\[ {} y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{3} = 0 \]

10141

\[ {} y^{\prime \prime }-x^{3} y^{\prime }-x y-x^{3}-x^{2} = 0 \]

10143

\[ {} y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{4}-x^{3} = 0 \]

10168

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+y {y^{\prime }}^{2} = 0 \]

10178

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 1+x \]

10179

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x \]

10180

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2}+x +1 \]

10184

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \sin \left (x \right ) \]

10185

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \sin \left (x \right )+1 \]

10187

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \cos \left (x \right )+\sin \left (x \right ) \]

10195

\[ {} 2 x^{2} y^{\prime \prime }+2 x y^{\prime }-x y = 1 \]

10207

\[ {} {y^{\prime }}^{2}+y^{2} = \sec \left (x \right )^{4} \]

10242

\[ {} \frac {x y^{\prime \prime }}{-x^{2}+1}+y = 0 \]

10254

\[ {} y^{\prime }+y = \frac {1}{x} \]

10255

\[ {} y^{\prime }+y = \frac {1}{x^{2}} \]

10257

\[ {} y^{\prime } = \frac {1}{x} \]

10258

\[ {} y^{\prime \prime } = \frac {1}{x} \]

10259

\[ {} y^{\prime \prime }+y^{\prime } = \frac {1}{x} \]

10260

\[ {} y^{\prime \prime }+y = \frac {1}{x} \]

10261

\[ {} y^{\prime \prime }+y^{\prime }+y = \frac {1}{x} \]

10270

\[ {} y^{\prime } = \frac {x y+3 x -2 y+6}{x y-3 x -2 y+6} \]

10299

\[ {} y^{\prime } = \cos \left (x \right )+\frac {y^{2}}{x} \]

10351

\[ {} t y^{\prime }+y = \sin \left (t \right ) \]