5.2.2 Problems 101 to 200

Table 5.29: Problems not solved by Maple

#

ODE

Mathematica

Maple

Sympy

5585

\[ {} \left (a^{2}-2 a x y+y^{2}\right ) {y^{\prime }}^{2}+2 a y y^{\prime }+y^{2} = 0 \]

5657

\[ {} x {y^{\prime }}^{3}-3 y {y^{\prime }}^{2} x^{2}+x \left (x^{5}+3 y^{2}\right ) y^{\prime }-2 x^{5} y-y^{3} = 0 \]

5668

\[ {} x y^{2} {y^{\prime }}^{3}-y^{3} {y^{\prime }}^{2}+x \left (x^{2}+1\right ) y^{\prime }-x^{2} y = 0 \]

5685

\[ {} x^{2} \left ({y^{\prime }}^{6}+3 y^{4}+3 y^{2}+1\right ) = a^{2} \]

5861

\[ {} a \tan \left (\frac {x}{2}\right )^{2} y-\csc \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5913

\[ {} \left (\operatorname {c1} \,x^{2}+\operatorname {b1} x +\operatorname {a1} \right ) y+a y^{\prime }+x y^{\prime \prime } = 0 \]

5953

\[ {} y+4 \coth \left (x \right ) y^{\prime }+4 x y^{\prime \prime } = 0 \]

6055

\[ {} y \left (\operatorname {a2} +\operatorname {b2} \,x^{k}+\operatorname {c2} \,x^{2 k}+\left (-1+\operatorname {a1} +\operatorname {b1} \,x^{k}\right ) f \left (x \right )+f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )+x \left (\operatorname {a1} +\operatorname {b1} \,x^{k}+2 f \left (x \right )\right ) y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6240

\[ {} \left (\operatorname {b1} \,x^{2}+\operatorname {b0} \right ) y+\left (\operatorname {a2} \,x^{2}+\operatorname {a1} x +\operatorname {a0} \right ) y^{\prime }+4 \left (1-x \right ) x \left (-a x +1\right ) y^{\prime \prime } = 0 \]

6269

\[ {} -\left (\operatorname {a4} \,x^{4}+\operatorname {a2} \,x^{2}+\operatorname {a0} \right ) y+2 x \left (a^{2}+2 x^{2}\right ) y^{\prime }+\left (a^{2}+x^{2}\right )^{2} y^{\prime \prime } = 0 \]

6271

\[ {} \left (\operatorname {b1} \,x^{2}+\operatorname {a1} \right ) y+x \left (\operatorname {b0} \,x^{2}+\operatorname {a0} \right ) y^{\prime }+\left (a^{2}+x^{2}\right )^{2} \left (b^{2}+x^{2}\right ) y^{\prime \prime } = 0 \]

6272

\[ {} \left (\operatorname {c1} \,x^{4}+\operatorname {b1} \,x^{2}+\operatorname {a1} \right ) y+x \left (\operatorname {b0} \,x^{2}+\operatorname {a0} \right ) y^{\prime }+\left (a^{2}-x^{2}\right )^{2} \left (b^{2}-x^{2}\right ) y^{\prime \prime } = 0 \]

6290

\[ {} x^{3} \left (\operatorname {c1} \,x^{4}+\operatorname {b1} \,x^{2}+\operatorname {a1} \right ) y+\left (\operatorname {b0} \,x^{4}+\operatorname {a0} \right ) y^{\prime }+x \left (a^{2}-x^{2}\right ) \left (b^{2}-x^{2}\right ) y^{\prime \prime } = 0 \]

6306

\[ {} y^{\prime \prime } = x +6 y^{2} \]

6307

\[ {} y^{\prime \prime } = a +b x +c y^{2} \]

6310

\[ {} y^{\prime \prime } = a +x y+2 y^{3} \]

6311

\[ {} y^{\prime \prime } = f \left (x \right )+g \left (x \right ) y+2 y^{3} \]

6312

\[ {} y^{\prime \prime } = a -2 a b x y+2 y^{3} b^{2} \]

6313

\[ {} y^{\prime \prime } = \operatorname {a0} +\operatorname {a2} y+\operatorname {a1} x y+\operatorname {a3} y^{3} \]

6315

\[ {} a \,x^{r} y^{s}+y^{\prime \prime } = 0 \]

6319

\[ {} y \left (2 f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )+3 f \left (x \right ) y^{\prime }+y^{\prime \prime } = 2 y^{3} \]

6323

\[ {} y y^{\prime }+y^{\prime \prime } = -12 f \left (x \right ) y+y^{3}+12 f^{\prime }\left (x \right ) \]

6326

\[ {} y^{\prime \prime } = \operatorname {f2} \left (x \right )+\operatorname {f3} \left (x \right ) y+\operatorname {f1} \left (x \right ) y^{2}+y^{3}+\left (3 \operatorname {f1} \left (x \right )-y\right ) y^{\prime } \]

6327

\[ {} y^{\prime \prime } = \operatorname {g3} \left (x \right )+\operatorname {g2} \left (x \right ) y+\operatorname {g1} \left (x \right ) y^{2}+\operatorname {g0} \left (x \right ) y^{3}+\left (\operatorname {f1} \left (x \right )+\operatorname {f0} \left (x \right ) y\right ) y^{\prime } \]

6328

\[ {} y^{\prime \prime } = f^{\prime }\left (x \right ) y+\left (f \left (x \right )-2 y\right ) y^{\prime } \]

6329

\[ {} y^{\prime \prime } = g \left (x \right )+f \left (x \right ) y^{2}+\left (f \left (x \right )-2 y\right ) y^{\prime } \]

6330

\[ {} y^{\prime \prime } = \operatorname {f3} \left (x \right )+\operatorname {f2} \left (x \right ) y^{2}+\left (\operatorname {f1} \left (x \right )-2 y\right ) y^{\prime } \]

6331

\[ {} y^{\prime \prime } = \operatorname {f4} \left (x \right )+\operatorname {f3} \left (x \right ) y+\operatorname {f2} \left (x \right ) y^{2}+\left (\operatorname {f1} \left (x \right )-2 y\right ) y^{\prime } \]

6333

\[ {} 3 y y^{\prime }+y^{\prime \prime } = f \left (x \right )+g \left (x \right ) y-y^{3} \]

6336

\[ {} b y+a \left (y^{2}-1\right ) y^{\prime }+y^{\prime \prime } = 0 \]

6337

\[ {} g \left (x , y\right )+f \left (x , y\right ) y^{\prime }+y^{\prime \prime } = 0 \]

6344

\[ {} c y+b y^{\prime }+a {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

6351

\[ {} h \left (y\right )+f \left (y\right ) y^{\prime }+g \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

6362

\[ {} y^{\prime \prime } = A \,x^{a} y^{b} {y^{\prime }}^{c} \]

6372

\[ {} y^{\prime \prime } = f \left (a x +b y, y^{\prime }\right ) \]

6373

\[ {} y^{\prime \prime } = f \left (x , \frac {y^{\prime }}{y}\right ) y \]

6374

\[ {} y^{\prime \prime } = x^{n -2} f \left (y x^{-n}, x^{-n +1} y^{\prime }\right ) \]

6380

\[ {} x y^{n}+2 y^{\prime }+x y^{\prime \prime } = 0 \]

6381

\[ {} x^{m} y^{n}+2 y^{\prime }+x y^{\prime \prime } = 0 \]

6382

\[ {} a \,x^{m} y^{n}+2 y^{\prime }+x y^{\prime \prime } = 0 \]

6383

\[ {} b \,{\mathrm e}^{y} x +a y^{\prime }+x y^{\prime \prime } = 0 \]

6391

\[ {} \left (-y+a x y^{\prime }\right )^{2}+x y^{\prime \prime } = b \]

6395

\[ {} a y \left (1-y^{n}\right )+x^{2} y^{\prime \prime } = 0 \]

6396

\[ {} a \,{\mathrm e}^{y-1}+x^{2} y^{\prime \prime } = 0 \]

6397

\[ {} \left (a +1\right ) x y^{\prime }+x^{2} y^{\prime \prime } = x^{k} f \left (x^{k} y, k y+x y^{\prime }\right ) \]

6403

\[ {} 2 x y+a \,x^{4} {y^{\prime }}^{2}+x^{2} y^{\prime \prime } = b \]

6404

\[ {} b x +a y {y^{\prime }}^{2}+x^{2} y^{\prime \prime } = 0 \]

6410

\[ {} 24+12 x y+x^{3} \left (-y^{3}+y y^{\prime }+y^{\prime \prime }\right ) = 0 \]

6412

\[ {} -6+x y \left (12+3 x y-2 x^{2} y^{2}\right )+x^{2} \left (9+2 x y\right ) y^{\prime }+2 x^{3} y^{\prime \prime } = 0 \]

6416

\[ {} y^{b}+x^{a} y^{\prime \prime } = 0 \]

6417

\[ {} 24-48 x y+\left (-12 x^{2}+1\right ) \left (y^{2}+3 y^{\prime }\right )+2 x \left (-4 x^{2}+1\right ) \left (-y^{3}+y y^{\prime }+y^{\prime \prime }\right ) = 0 \]

6418

\[ {} b +a x y-\left (-12 x^{2}+k \,x^{k -1}\right ) \left (y^{2}+3 y^{\prime }\right )+2 \left (-4 x^{3}+x^{k}\right ) \left (-y^{3}+y y^{\prime }+y^{\prime \prime }\right ) = 0 \]

6419

\[ {} \sqrt {x}\, y^{\prime \prime } = y^{{3}/{2}} \]

6422

\[ {} f \left (x \right ) f^{\prime }\left (x \right ) y^{\prime }+f \left (x \right )^{2} y^{\prime \prime } = g \left (y, f \left (x \right ) y^{\prime }\right ) \]

6423

\[ {} f \left (x \right )^{2} y^{\prime \prime } = -24 f \left (x \right )^{4}+\left (3 f \left (x \right )^{3}-f \left (x \right )^{2} y+3 f \left (x \right ) f^{\prime }\left (x \right )\right ) y^{\prime } \]

6436

\[ {} y y^{\prime \prime } = {\mathrm e}^{x} y \left (\operatorname {a0} +\operatorname {a1} y^{2}\right )+{\mathrm e}^{2 x} \left (\operatorname {a2} +\operatorname {a3} y^{4}\right )+{y^{\prime }}^{2} \]

6441

\[ {} y y^{\prime \prime } = y^{2} \left (f \left (x \right ) y+g^{\prime }\left (x \right )\right )+y^{\prime }+{y^{\prime }}^{2} \]

6443

\[ {} y-x y^{\prime }+{y^{\prime }}^{2}+y y^{\prime \prime } = 0 \]

6444

\[ {} a x y^{\prime }+{y^{\prime }}^{2}+y y^{\prime \prime } = 0 \]

6445

\[ {} y y^{\prime \prime } = y^{3}-f^{\prime }\left (x \right ) y+f \left (x \right ) y^{\prime }+{y^{\prime }}^{2} \]

6446

\[ {} y y^{\prime \prime } = -f \left (x \right ) y^{3}+y^{4}-f \left (x \right ) y^{\prime }+{y^{\prime }}^{2}+y f^{\prime \prime }\left (x \right ) \]

6448

\[ {} y y^{\prime \prime } = b y^{2}+y^{3}+a y y^{\prime }+{y^{\prime }}^{2} \]

6451

\[ {} y y^{\prime \prime } = -y \left (f^{\prime }\left (x \right )-y^{2} g^{\prime }\left (x \right )\right )+\left (f \left (x \right )+g \left (x \right ) y^{2}\right ) y^{\prime }+{y^{\prime }}^{2} \]

6461

\[ {} g \left (x \right ) y^{2}+f \left (x \right ) y y^{\prime }+a {y^{\prime }}^{2}+y y^{\prime \prime } = 0 \]

6478

\[ {} 2 y y^{\prime \prime } = 4 y^{2} \left (2 y+x \right )+{y^{\prime }}^{2} \]

6480

\[ {} 2 y y^{\prime \prime } = -1-2 x y^{2}+a y^{3}+{y^{\prime }}^{2} \]

6481

\[ {} 2 y y^{\prime \prime } = y^{2} \left (a x +b y\right )+{y^{\prime }}^{2} \]

6483

\[ {} 2 y y^{\prime \prime } = -a^{2}-4 \left (-x^{2}+b \right ) y^{2}+8 x y^{3}+3 y^{4}+{y^{\prime }}^{2} \]

6484

\[ {} 2 y y^{\prime \prime } = 8 y^{3}-2 y^{2} \left (f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )-3 f \left (x \right ) y y^{\prime }+{y^{\prime }}^{2} \]

6485

\[ {} 2 y y^{\prime \prime } = -1+2 x f \left (x \right ) y^{2}-y^{4}-4 y^{2} y^{\prime }+{y^{\prime }}^{2} \]

6488

\[ {} 2 y y^{\prime \prime } = f \left (x \right ) y^{2}+3 {y^{\prime }}^{2} \]

6500

\[ {} a \left (2+a \right )^{2} y y^{\prime \prime } = -a^{2} f \left (x \right )^{2} y^{4}+a^{2} \left (2+a \right ) y^{3} f^{\prime }\left (x \right )+a \left (2+a \right )^{2} f \left (x \right ) y^{2} y^{\prime }+\left (a -1\right ) \left (2+a \right )^{2} {y^{\prime }}^{2} \]

6504

\[ {} x y y^{\prime \prime } = y \left (\operatorname {a2} +\operatorname {a3} y^{2}\right )+x \left (\operatorname {a0} +\operatorname {a1} y^{4}\right )-y y^{\prime }+x {y^{\prime }}^{2} \]

6508

\[ {} x y y^{\prime \prime } = x y^{3}+a y y^{\prime }+x {y^{\prime }}^{2} \]

6509

\[ {} x y y^{\prime \prime } = b^{2} x y^{3}+a y y^{\prime }+x {y^{\prime }}^{2} \]

6536

\[ {} \operatorname {f3} \left (x \right ) y^{2}+\operatorname {f2} \left (x \right ) y y^{\prime }+\operatorname {f1} \left (x \right ) {y^{\prime }}^{2}+\operatorname {f0} \left (x \right ) y y^{\prime \prime } = 0 \]

6537

\[ {} 4 f \left (x \right ) y y^{\prime \prime } = 4 f \left (x \right )^{2} y+3 f \left (x \right ) g \left (x \right ) y^{2}-f \left (x \right ) y^{4}+2 y^{3} f^{\prime }\left (x \right )+\left (-6 f \left (x \right ) y^{2}+2 f^{\prime }\left (x \right )\right ) y^{\prime }+3 f \left (x \right ) {y^{\prime }}^{2} \]

6540

\[ {} y {y^{\prime }}^{2}+y^{2} y^{\prime \prime } = b x +a \]

6547

\[ {} \left (x^{2}+y^{2}\right ) y^{\prime \prime } = \left (1+y^{2}\right ) \left (x y^{\prime }-y\right ) \]

6548

\[ {} \left (x^{2}+y^{2}\right ) y^{\prime \prime } = 2 \left (1+y^{2}\right ) \left (x y^{\prime }-y\right ) \]

6552

\[ {} 2 \left (1-y\right ) y y^{\prime \prime } = 4 y \left (f \left (x \right )+g \left (x \right ) y\right ) y^{\prime }+\left (1-3 y\right ) {y^{\prime }}^{2} \]

6553

\[ {} 2 \left (1-y\right ) y y^{\prime \prime } = -\left (1-y\right )^{3} \left (\operatorname {F0} \left (x \right )^{2}-\operatorname {G0} \left (x \right )^{2} y^{2}\right )-4 \left (1-y\right ) y^{2} \left (f \left (x \right )^{2}-g \left (x \right )^{2}+f^{\prime }\left (x \right )+g^{\prime }\left (x \right )\right )-4 y \left (f \left (x \right )+g \left (x \right ) y\right ) y^{\prime }+\left (1-3 y\right ) {y^{\prime }}^{2} \]

6560

\[ {} \operatorname {a2} x \left (1-y\right ) y^{2}+\operatorname {a3} \,x^{3} y^{2} \left (1+y\right )+\left (1-y\right )^{3} \left (\operatorname {a0} +\operatorname {a1} y^{2}\right )+2 x \left (1-y\right ) y y^{\prime }-x^{2} \left (1-3 y\right ) {y^{\prime }}^{2}+2 x^{2} \left (1-y\right ) y y^{\prime \prime } = 0 \]

6567

\[ {} 2 \left (1-x \right ) x \left (1-y\right ) \left (x -y\right ) y y^{\prime \prime } = -y^{2} \left (1-y^{2}\right )+2 \left (1-y\right ) y \left (x^{2}+y-2 x y\right ) y^{\prime }+\left (1-x \right ) x \left (x -2 y-2 x y+3 y^{2}\right ) {y^{\prime }}^{2} \]

6568

\[ {} 2 \left (1-x \right ) x \left (1-y\right ) \left (x -y\right ) y y^{\prime \prime } = f \left (x \right ) \left (\left (1-y\right ) \left (x -y\right ) y\right )^{{3}/{2}}-y^{2} \left (1-y^{2}\right )+2 \left (1-y\right ) y \left (x^{2}+y-2 x y\right ) y^{\prime }+\left (1-x \right ) x \left (x -2 y-2 x y+3 y^{2}\right ) {y^{\prime }}^{2} \]

6569

\[ {} 2 \left (1-x \right )^{2} x^{2} \left (1-y\right ) \left (x -y\right ) y y^{\prime \prime } = \operatorname {a0} x \left (1-y\right )^{2} \left (x -y\right )^{2}+\left (\operatorname {a2} -1\right ) \left (1-x \right ) x \left (1-y\right )^{2} y^{2}+\operatorname {a1} \left (1-x \right ) \left (x -y\right )^{2} y^{2}+\operatorname {a3} \left (1-y\right )^{2} \left (x -y\right )^{2} y^{2}+2 \left (1-x \right ) x \left (1-y\right )^{2} y \left (x^{2}+y-2 x y\right ) y^{\prime }+\left (1-x \right )^{2} x^{2} \left (x -2 y-2 x y+3 y^{2}\right ) {y^{\prime }}^{2} \]

6570

\[ {} y \left (1+a^{2}-2 a^{2} y^{2}\right )+b \sqrt {\left (1-y^{2}\right ) \left (1-a^{2} y^{2}\right )}\, {y^{\prime }}^{2}+\left (1-y^{2}\right ) \left (1-a^{2} y^{2}\right ) y^{\prime \prime } = 0 \]

6573

\[ {} \operatorname {f3} \left (y\right )+\operatorname {f2} \left (y\right ) y^{\prime }+\operatorname {f1} \left (y\right ) {y^{\prime }}^{2}+\operatorname {f0} \left (y\right ) y^{\prime \prime } = 0 \]

6576

\[ {} X \left (x , y\right )^{3} y^{\prime \prime } = 1 \]

6580

\[ {} y^{\prime } y^{\prime \prime } = x y^{2}+x^{2} y y^{\prime } \]

6581

\[ {} y+x y^{\prime }+2 \left (x +y\right ) {y^{\prime }}^{2}+\left (y^{2}+2 x^{2} y^{\prime }\right ) y^{\prime \prime } = 0 \]

6585

\[ {} y+3 x y^{\prime }+2 {y^{\prime }}^{3} y+\left (x^{2}+2 y^{2} y^{\prime }\right ) y^{\prime \prime } = 0 \]

6590

\[ {} h \left (x \right )+g \left (y\right ) y^{\prime }+f \left (y^{\prime }\right ) y^{\prime \prime } = 0 \]

6597

\[ {} 2 \left (x -y^{\prime }\right ) y^{\prime }-x \left (x +4 y^{\prime }\right ) y^{\prime \prime }+2 \left (x^{2}+1\right ) {y^{\prime \prime }}^{2} = 2 y \]

6604

\[ {} \left (y^{2}-x^{2} {y^{\prime }}^{2}+x^{2} y y^{\prime \prime }\right )^{2} = 4 x y \left (x y^{\prime }-y\right )^{3} \]

6606

\[ {} 32 y^{\prime \prime } \left (x y^{\prime \prime }-y^{\prime }\right )^{3}+\left (2 y y^{\prime \prime }-{y^{\prime }}^{2}\right )^{3} = 0 \]

6632

\[ {} f^{\prime }\left (x \right ) y+2 f \left (x \right ) y^{\prime }+y^{\prime \prime \prime } = 0 \]

6675

\[ {} 2 y \left (2 f \left (x \right ) g \left (x \right )+g^{\prime }\left (x \right )\right )+\left (4 g \left (x \right )+f^{\prime }\left (x \right )+2 {f^{\prime }\left (x \right )}^{2}\right ) y^{\prime }+3 f \left (x \right ) y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

6695

\[ {} 2 x^{3} y+\left (-2 x^{3}+6\right ) y^{\prime }+x \left (-x^{2}+6\right ) y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = 0 \]

6724

\[ {} -6 y+6 y^{\prime } \left (1+x \right )-3 x \left (x +2\right ) y^{\prime \prime }+x^{2} \left (3+y\right ) y^{\prime \prime \prime } = 0 \]