| # | ODE | Mathematica | Maple | Sympy |
| \[
{} 2 {y^{\prime }}^{3} x^{3}+6 y {y^{\prime }}^{2} x^{2}-\left (1-6 x y\right ) y y^{\prime }+2 y^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3} x^{4}-y {y^{\prime }}^{2} x^{3}-x^{2} y^{2} y^{\prime }+x y^{3} = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{6} {y^{\prime }}^{3}-x y^{\prime }-y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 2 {y^{\prime }}^{3} y-3 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2} {y^{\prime }}^{3}-x y^{\prime }+y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{2} {y^{\prime }}^{3}+2 x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 y^{2} {y^{\prime }}^{3}-2 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 16 y^{2} {y^{\prime }}^{3}+2 x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{2} {y^{\prime }}^{3}-y^{3} {y^{\prime }}^{2}+x \left (x^{2}+1\right ) y^{\prime }-x^{2} y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{3} {y^{\prime }}^{3}-\left (1-3 x \right ) y^{2} {y^{\prime }}^{2}+3 x^{2} y y^{\prime }+x^{3}-y^{2} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{4} {y^{\prime }}^{3}-6 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{4}+x y^{\prime }-3 y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{4}-4 y {y^{\prime }}^{2} x^{2}+16 x y^{2} y^{\prime }-16 y^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{4} x -2 {y^{\prime }}^{3} y+12 x^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 {y^{\prime }}^{5}-y y^{\prime }+1 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} \left ({y^{\prime }}^{6}+3 y^{4}+3 y^{2}+1\right ) = a^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \sqrt {a^{2}+b^{2} {y^{\prime }}^{2}}+x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a \sqrt {1+{y^{\prime }}^{2}}+x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a \left (1+{y^{\prime }}^{3}\right )^{{1}/{3}}+x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \cos \left (y^{\prime }\right )+x y^{\prime } = y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a \cos \left (y^{\prime }\right )+b y^{\prime }+x = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \sin \left (y^{\prime }\right )+y^{\prime } = x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } \sin \left (y^{\prime }\right )+\cos \left (y^{\prime }\right ) = y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2} \left (x +\sin \left (y^{\prime }\right )\right ) = y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+{y^{\prime }}^{2}\right ) \sin \left (x y^{\prime }-y\right )^{2} = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+{y^{\prime }}^{2}\right ) \left (\arctan \left (y^{\prime }\right )+a x \right )+y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {\mathrm e}^{y^{\prime }-y}-{y^{\prime }}^{2}+1 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } \ln \left (y^{\prime }\right )-y^{\prime } \left (1+x \right )+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } \ln \left (y^{\prime }+\sqrt {1+{y^{\prime }}^{2}}\right )-\sqrt {1+{y^{\prime }}^{2}}-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \ln \left (\cos \left (y^{\prime }\right )\right )+y^{\prime } \tan \left (y^{\prime }\right ) = y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y = \sin \left (a x \right ) \sin \left (b x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}+a \right ) y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (-x^{2}+a \right ) y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = \left (x^{2}+a \right ) y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (b^{2} x^{2}+a \right ) y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (c \,x^{2}+b x +a \right ) y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{4}+\operatorname {a1} \,x^{2}+\operatorname {a0} \right ) y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a \,x^{k} y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (a +b \cos \left (2 x \right )\right ) y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (a +b \cos \left (2 x \right )+k \cos \left (4 x \right )\right ) y+y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = 2 \csc \left (x \right )^{2} y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a \csc \left (x \right )^{2} y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (\operatorname {a0} +\operatorname {a1} \cos \left (x \right )^{2}+\operatorname {a2} \csc \left (x \right )^{2}\right ) y+y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = \left (a^{2}+\left (-1+p \right ) p \csc \left (x \right )^{2}+\left (-1+q \right ) q \sec \left (x \right )^{2}\right ) y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (a +b \sin \left (x \right )^{2}\right ) y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = \left (1+2 \tan \left (x \right )^{2}\right ) y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -\left (a^{2}-b \,{\mathrm e}^{x}\right ) y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -\left (a^{2}-{\mathrm e}^{2 x}\right ) y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (a +b \,{\mathrm e}^{x}+c \,{\mathrm e}^{2 x}\right ) y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a \,{\mathrm e}^{b x} y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (a +b \cosh \left (x \right )^{2}\right ) y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (a +b \sinh \left (x \right )^{2}\right ) y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (a +b \sin \left (x \right )^{2}\right ) y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y-y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (c x +b \right ) y+a y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (c \,x^{2}+b \right ) y+a y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (b +{\mathrm e}^{x} c \right ) y+a y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} b \,{\mathrm e}^{2 a x} y+a y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} b \,{\mathrm e}^{k x} y+a y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y+x y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -y+x y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y-x y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} n y-x y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -a y-x y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -\left (1-x \right ) y-x y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 6 y-2 x y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -8 y+2 x y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 n y-2 x y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -\left (-x^{2}-x +1\right ) y-\left (2 x +1\right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 \left (2 x^{2}+1\right ) y+4 x y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -\left (-4 x^{2}+3\right ) y-4 x y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -\left (-4 x^{2}+3\right ) y-4 x y^{\prime }+y^{\prime \prime } = {\mathrm e}^{x^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a^{2} x^{2} y-2 a x y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} b y+a x y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} c y+\left (b x +a \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (\operatorname {b1} x +\operatorname {a1} \right ) y+\left (\operatorname {b0} x +\operatorname {a0} \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (\operatorname {c1} \,x^{2}+\operatorname {b1} x +\operatorname {a1} \right ) y+\left (\operatorname {b0} x +\operatorname {a0} \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -2 a \left (-2 x^{2} a +1\right ) y-4 a x y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y-x^{2} y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y-x^{2} y^{\prime }+y^{\prime \prime } = x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -4 x y+x^{2} y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -x^{3} y+x^{4} y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a \left (1+k \right ) x^{k -1} y+a \,x^{k} y^{\prime }+y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} a k \,x^{k -1} y+a \,x^{k} y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -a \,x^{k -1} y+a \,x^{k} y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} b \,x^{k -1} y+a \,x^{k} y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y-\cot \left (x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} k \left (1+k \right ) y+\cot \left (x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -\csc \left (x \right )^{2} y+\cot \left (x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (p \left (p +1\right )-k^{2} \csc \left (x \right )^{2}\right ) y+\cot \left (x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (\operatorname {a0} -\operatorname {a2} \csc \left (x \right )^{2}+4 \operatorname {a1} \sin \left (x \right )^{2}\right ) y+\cot \left (x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 y+2 \cot \left (x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 y+2 \cot \left (x \right ) y^{\prime }+y^{\prime \prime } = {\mathrm e}^{x} \csc \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (b +k^{2} \cos \left (x \right )^{2}\right ) y+a \cot \left (x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (a \cot \left (x \right )^{2}+b \cot \left (x \right ) \csc \left (x \right )+c \csc \left (x \right )^{2}\right ) y+k \cot \left (x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y-\cot \left (2 x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a \tan \left (x \right )^{2} y-2 \cot \left (2 x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} c y+a \cot \left (b x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (-a^{2}+b^{2}\right ) y+2 a \cot \left (a x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a \tan \left (\frac {x}{2}\right )^{2} y-\csc \left (x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✗ |
✗ |
|