| # | ODE | Mathematica | Maple | Sympy |
| \[
{} \left (\cot \left (x \right )+\csc \left (x \right )\right ) y^{\prime }+y^{\prime \prime } = 1+a \csc \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \csc \left (x \right )^{2} \left (2+\sin \left (x \right )^{2}\right ) y-\csc \left (2 x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a \csc \left (x \right )^{2} y+\left (2+\cos \left (x \right )\right ) \csc \left (x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -2 \left (\cos \left (x \right )+1\right ) \sec \left (x \right ) y-\left (2+3 \cos \left (x \right )\right ) \csc \left (x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \sin \left (x \right )^{2} y-\left (\cot \left (x \right )-\sin \left (x \right )\right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -y \cos \left (x \right )-y^{\prime } \sin \left (x \right )+y^{\prime \prime } = a -x +x \ln \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} b \tan \left (x \right )^{2} y-2 \csc \left (2 x \right ) \left (1-a \sin \left (x \right )^{2}\right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a \cos \left (x \right )^{2} y+\tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a \cot \left (x \right )^{2} y+\tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -a \left (a +1\right ) \csc \left (x \right )^{2} y-\tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (a \cos \left (x \right )^{2}-\sec \left (x \right )^{2}\right ) y-\tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -y+2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -y+2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime } = \left (1+x \right ) \sec \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 y+2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} b y-2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -\left (a^{2}+1\right ) y-2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -\left (a^{2}+1\right ) y-2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime } = \sin \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} b y+a \tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y \,{\mathrm e}^{2 x}-\left (1+2 \,{\mathrm e}^{x}\right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (\operatorname {a0} -\operatorname {a2} \operatorname {csch}\left (x \right )^{2}+4 \operatorname {a1} \sinh \left (x \right )^{2}\right ) y+\coth \left (x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (\operatorname {a0} +4 \operatorname {a1} \cosh \left (x \right )^{2}-\operatorname {a2} \operatorname {sech}\left (x \right )^{2}\right ) y+\tanh \left (x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} b y+2 \tanh \left (x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} b y+a \tanh \left (x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a k \,x^{k -1} y+2 a \,x^{k} y^{\prime }+2 y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 y^{\prime \prime } = \left (x^{2}+a \right ) y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (-x^{2}+4 a +2\right ) y+4 y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x +a \right ) y+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -\left (1+x \right ) y+y^{\prime }+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left ({\mathrm e}^{x^{2}}-k^{2}\right ) x^{3} y-y^{\prime }+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -x y+2 y^{\prime }+x y^{\prime \prime } = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y+\left (a +1\right ) y^{\prime }+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y+\left (1-a \right ) y^{\prime }+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -y+\left (a +1\right ) y^{\prime }+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -y+2 n y^{\prime }+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} b y+a y^{\prime }+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} b x y+a y^{\prime }+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (\operatorname {b2} x +\operatorname {b1} \right ) y+a y^{\prime }+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (\operatorname {c1} \,x^{2}+\operatorname {b1} x +\operatorname {a1} \right ) y+a y^{\prime }+x y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} b \,x^{k} y+a y^{\prime }+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y-y^{\prime } \left (1+x \right )+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} n y+\left (1-x \right ) y^{\prime }+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} n y+\left (1+k -x \right ) y^{\prime }+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 \left (1-x \right ) y-y^{\prime } \left (1+x \right )+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -y-\left (2-x \right ) y^{\prime }+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y-\left (x +3\right ) y^{\prime }+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 y-\left (x +3\right ) y^{\prime }+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} b y+\left (x +a \right ) y^{\prime }+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -a y+\left (c -x \right ) y^{\prime }+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -\left (1-x \right ) y+\left (1-2 x \right ) y^{\prime }+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = x^{2}-x -1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} c y+\left (b x +a \right ) y^{\prime }+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+\left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (b x +2 a \right ) y-2 \left (b x +a \right ) y^{\prime }+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (a b x +a n +b m \right ) y+\left (m +n +x \left (a +b \right )\right ) y^{\prime }+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x y-\left (-x^{2}+4\right ) y^{\prime }+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{3} y-\left (2 x^{2}+1\right ) y^{\prime }+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -8 x^{3} y-\left (2 x^{2}+1\right ) y^{\prime }+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -8 x^{3} y-\left (2 x^{2}+1\right ) y^{\prime }+x y^{\prime \prime } = 4 x^{3} {\mathrm e}^{-x^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 x \left (x^{2}+1\right ) y+\left (4 x^{2}+1\right ) y^{\prime }+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a \,x^{2} \left (a \,x^{3}+1\right ) y-\left (-2 a \,x^{3}+1\right ) y^{\prime }+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} f \left (x \right ) y+\left (2+f \left (x \right ) x \right ) y^{\prime }+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -y+x y^{\prime }+\left (1-x \right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -y+x y^{\prime }+\left (1-x \right ) y^{\prime \prime } = \left (1-x \right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 \left (2-x \right ) y-\left (9-4 x \right ) y^{\prime }+\left (3-x \right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+\left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+\left (x +a \right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (b x +a \right ) y+y^{\prime }+2 x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -x y-\left (2 x^{2}+1\right ) y^{\prime }+2 x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -y-\left (x +2\right ) y^{\prime }+\left (1-2 x \right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (3-x \right ) y-\left (4-3 x \right ) y^{\prime }+\left (1-2 x \right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y+4 \coth \left (x \right ) y^{\prime }+4 x y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (b x +a \right ) y+8 y^{\prime }+16 x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+\left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+\left (\operatorname {b0} x +\operatorname {a0} \right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y-x y^{\prime }+\left (1-x \cot \left (x \right )\right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -\left (-x^{2}+2\right ) y+x^{2} y^{\prime \prime } = x^{4}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (c \,x^{2}+b x +a \right ) y+x^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{k} \left (a +b \,x^{k}\right ) y+x^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -b \left (b \,x^{2}+a \right ) y+a y^{\prime }+x^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -\left (c \,x^{2}+b x +a \right ) y+x y^{\prime }+x^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -\left (-x^{4}+4 x^{2} a +n^{2}\right ) y+x y^{\prime }+x^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -\left (c^{2} x^{4}+b^{2} x^{2}+a^{2}\right ) y+x y^{\prime }+x^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -y+\left (x +a \right ) y^{\prime }+x^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a y-2 \left (1-x \right ) y^{\prime }+x^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (a \left (a +1\right )+b^{2} x^{2}\right ) y-2 a x y^{\prime }+x^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+\operatorname {a1} x y^{\prime }+x^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (\operatorname {b2} \,x^{2}+\operatorname {a2} \right ) y+\operatorname {a1} x y^{\prime }+x^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (\operatorname {c2} \,x^{2}+\operatorname {b2} x +\operatorname {a2} \right ) y+\operatorname {a1} x y^{\prime }+x^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (c \,x^{3}+b \right ) y+a x y^{\prime }+x^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} \left (\operatorname {b1} \,x^{2}+\operatorname {a1} \right ) y+a x y^{\prime }+x^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (b +c \,x^{2 k}\right ) y+a x y^{\prime }+x^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} c y+\left (b x +a \right ) y^{\prime }+x^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a \left (a +1\right ) y-2 a x y^{\prime }+x^{2} y^{\prime \prime } = {\mathrm e}^{x} x^{2+a}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (a \left (a +1\right )+b^{2} x^{2}\right ) y-2 a x y^{\prime }+x^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (b x +a \right ) y+2 a x y^{\prime }+x^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (b \,x^{2}+a \right ) y+x^{2} y^{\prime }+x^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -y-y^{\prime } \left (-x^{2}+1\right )+x^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -\left (1-x \right ) y+x \left (1-x \right ) y^{\prime }+x^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = x^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -\left (2+3 x \right ) y+\left (2-x \right ) x y^{\prime }+x^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|