5.3.12 Problems 1101 to 1200

Table 5.69: Problems not solved by Sympy

#

ODE

Mathematica

Maple

Sympy

5862

\[ {} \left (\cot \left (x \right )+\csc \left (x \right )\right ) y^{\prime }+y^{\prime \prime } = 1+a \csc \left (x \right ) \]

5863

\[ {} \csc \left (x \right )^{2} \left (2+\sin \left (x \right )^{2}\right ) y-\csc \left (2 x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5864

\[ {} a \csc \left (x \right )^{2} y+\left (2+\cos \left (x \right )\right ) \csc \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5865

\[ {} -2 \left (\cos \left (x \right )+1\right ) \sec \left (x \right ) y-\left (2+3 \cos \left (x \right )\right ) \csc \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5866

\[ {} \sin \left (x \right )^{2} y-\left (\cot \left (x \right )-\sin \left (x \right )\right ) y^{\prime }+y^{\prime \prime } = 0 \]

5867

\[ {} -y \cos \left (x \right )-y^{\prime } \sin \left (x \right )+y^{\prime \prime } = a -x +x \ln \left (x \right ) \]

5868

\[ {} b \tan \left (x \right )^{2} y-2 \csc \left (2 x \right ) \left (1-a \sin \left (x \right )^{2}\right ) y^{\prime }+y^{\prime \prime } = 0 \]

5869

\[ {} a \cos \left (x \right )^{2} y+\tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5870

\[ {} a \cot \left (x \right )^{2} y+\tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5871

\[ {} -a \left (a +1\right ) \csc \left (x \right )^{2} y-\tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5872

\[ {} \left (a \cos \left (x \right )^{2}-\sec \left (x \right )^{2}\right ) y-\tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5873

\[ {} -y+2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5874

\[ {} -y+2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime } = \left (1+x \right ) \sec \left (x \right ) \]

5875

\[ {} 3 y+2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5876

\[ {} b y-2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5877

\[ {} -\left (a^{2}+1\right ) y-2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5878

\[ {} -\left (a^{2}+1\right ) y-2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime } = \sin \left (x \right ) \]

5879

\[ {} b y+a \tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5880

\[ {} y \,{\mathrm e}^{2 x}-\left (1+2 \,{\mathrm e}^{x}\right ) y^{\prime }+y^{\prime \prime } = 0 \]

5881

\[ {} \left (\operatorname {a0} -\operatorname {a2} \operatorname {csch}\left (x \right )^{2}+4 \operatorname {a1} \sinh \left (x \right )^{2}\right ) y+\coth \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5882

\[ {} \left (\operatorname {a0} +4 \operatorname {a1} \cosh \left (x \right )^{2}-\operatorname {a2} \operatorname {sech}\left (x \right )^{2}\right ) y+\tanh \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5883

\[ {} b y+2 \tanh \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5884

\[ {} b y+a \tanh \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5886

\[ {} a k \,x^{k -1} y+2 a \,x^{k} y^{\prime }+2 y^{\prime \prime } = 0 \]

5888

\[ {} 4 y^{\prime \prime } = \left (x^{2}+a \right ) y \]

5889

\[ {} \left (-x^{2}+4 a +2\right ) y+4 y^{\prime \prime } = 0 \]

5892

\[ {} \left (x +a \right ) y+x y^{\prime \prime } = 0 \]

5896

\[ {} -\left (1+x \right ) y+y^{\prime }+x y^{\prime \prime } = 0 \]

5899

\[ {} \left ({\mathrm e}^{x^{2}}-k^{2}\right ) x^{3} y-y^{\prime }+x y^{\prime \prime } = 0 \]

5902

\[ {} -x y+2 y^{\prime }+x y^{\prime \prime } = {\mathrm e}^{x} \]

5906

\[ {} y+\left (a +1\right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5907

\[ {} y+\left (1-a \right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5908

\[ {} -y+\left (a +1\right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5909

\[ {} -y+2 n y^{\prime }+x y^{\prime \prime } = 0 \]

5910

\[ {} b y+a y^{\prime }+x y^{\prime \prime } = 0 \]

5911

\[ {} b x y+a y^{\prime }+x y^{\prime \prime } = 0 \]

5912

\[ {} \left (\operatorname {b2} x +\operatorname {b1} \right ) y+a y^{\prime }+x y^{\prime \prime } = 0 \]

5913

\[ {} \left (\operatorname {c1} \,x^{2}+\operatorname {b1} x +\operatorname {a1} \right ) y+a y^{\prime }+x y^{\prime \prime } = 0 \]

5914

\[ {} b \,x^{k} y+a y^{\prime }+x y^{\prime \prime } = 0 \]

5915

\[ {} y-y^{\prime } \left (1+x \right )+x y^{\prime \prime } = 0 \]

5916

\[ {} n y+\left (1-x \right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5917

\[ {} n y+\left (1+k -x \right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5918

\[ {} 2 \left (1-x \right ) y-y^{\prime } \left (1+x \right )+x y^{\prime \prime } = 0 \]

5919

\[ {} -y-\left (2-x \right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5920

\[ {} y-\left (x +3\right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5921

\[ {} 3 y-\left (x +3\right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5922

\[ {} b y+\left (x +a \right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5923

\[ {} -a y+\left (c -x \right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5924

\[ {} -\left (1-x \right ) y+\left (1-2 x \right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5925

\[ {} x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = 0 \]

5926

\[ {} x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = x^{2}-x -1 \]

5927

\[ {} c y+\left (b x +a \right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5928

\[ {} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+\left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5929

\[ {} \left (b x +2 a \right ) y-2 \left (b x +a \right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5930

\[ {} \left (a b x +a n +b m \right ) y+\left (m +n +x \left (a +b \right )\right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5932

\[ {} 2 x y-\left (-x^{2}+4\right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5933

\[ {} x^{3} y-\left (2 x^{2}+1\right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5934

\[ {} -8 x^{3} y-\left (2 x^{2}+1\right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5935

\[ {} -8 x^{3} y-\left (2 x^{2}+1\right ) y^{\prime }+x y^{\prime \prime } = 4 x^{3} {\mathrm e}^{-x^{2}} \]

5936

\[ {} 4 x \left (x^{2}+1\right ) y+\left (4 x^{2}+1\right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5937

\[ {} a \,x^{2} \left (a \,x^{3}+1\right ) y-\left (-2 a \,x^{3}+1\right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5938

\[ {} f \left (x \right ) y+\left (2+f \left (x \right ) x \right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5939

\[ {} -y+x y^{\prime }+\left (1-x \right ) y^{\prime \prime } = 0 \]

5940

\[ {} -y+x y^{\prime }+\left (1-x \right ) y^{\prime \prime } = \left (1-x \right )^{2} \]

5941

\[ {} 3 \left (2-x \right ) y-\left (9-4 x \right ) y^{\prime }+\left (3-x \right ) y^{\prime \prime } = 0 \]

5943

\[ {} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+\left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+\left (x +a \right ) y^{\prime \prime } = 0 \]

5947

\[ {} \left (b x +a \right ) y+y^{\prime }+2 x y^{\prime \prime } = 0 \]

5948

\[ {} -x y-\left (2 x^{2}+1\right ) y^{\prime }+2 x y^{\prime \prime } = 0 \]

5949

\[ {} -y-\left (x +2\right ) y^{\prime }+\left (1-2 x \right ) y^{\prime \prime } = 0 \]

5950

\[ {} \left (3-x \right ) y-\left (4-3 x \right ) y^{\prime }+\left (1-2 x \right ) y^{\prime \prime } = 0 \]

5953

\[ {} y+4 \coth \left (x \right ) y^{\prime }+4 x y^{\prime \prime } = 0 \]

5954

\[ {} \left (b x +a \right ) y+8 y^{\prime }+16 x y^{\prime \prime } = 0 \]

5956

\[ {} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+\left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+\left (\operatorname {b0} x +\operatorname {a0} \right ) y^{\prime \prime } = 0 \]

5957

\[ {} y-x y^{\prime }+\left (1-x \cot \left (x \right )\right ) y^{\prime \prime } = 0 \]

5965

\[ {} -\left (-x^{2}+2\right ) y+x^{2} y^{\prime \prime } = x^{4} \]

5970

\[ {} \left (c \,x^{2}+b x +a \right ) y+x^{2} y^{\prime \prime } = 0 \]

5972

\[ {} x^{k} \left (a +b \,x^{k}\right ) y+x^{2} y^{\prime \prime } = 0 \]

5973

\[ {} -b \left (b \,x^{2}+a \right ) y+a y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

5990

\[ {} -\left (c \,x^{2}+b x +a \right ) y+x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

5991

\[ {} -\left (-x^{4}+4 x^{2} a +n^{2}\right ) y+x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

5992

\[ {} -\left (c^{2} x^{4}+b^{2} x^{2}+a^{2}\right ) y+x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

5994

\[ {} -y+\left (x +a \right ) y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6005

\[ {} a y-2 \left (1-x \right ) y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6022

\[ {} \left (a \left (a +1\right )+b^{2} x^{2}\right ) y-2 a x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6024

\[ {} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+\operatorname {a1} x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6025

\[ {} \left (\operatorname {b2} \,x^{2}+\operatorname {a2} \right ) y+\operatorname {a1} x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6026

\[ {} \left (\operatorname {c2} \,x^{2}+\operatorname {b2} x +\operatorname {a2} \right ) y+\operatorname {a1} x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6027

\[ {} \left (c \,x^{3}+b \right ) y+a x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6028

\[ {} x^{2} \left (\operatorname {b1} \,x^{2}+\operatorname {a1} \right ) y+a x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6029

\[ {} \left (b +c \,x^{2 k}\right ) y+a x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6030

\[ {} c y+\left (b x +a \right ) y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6032

\[ {} a \left (a +1\right ) y-2 a x y^{\prime }+x^{2} y^{\prime \prime } = {\mathrm e}^{x} x^{2+a} \]

6033

\[ {} \left (a \left (a +1\right )+b^{2} x^{2}\right ) y-2 a x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6034

\[ {} \left (b x +a \right ) y+2 a x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6036

\[ {} \left (b \,x^{2}+a \right ) y+x^{2} y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6037

\[ {} -y-y^{\prime } \left (-x^{2}+1\right )+x^{2} y^{\prime \prime } = 0 \]

6038

\[ {} -\left (1-x \right ) y+x \left (1-x \right ) y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6039

\[ {} x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

6040

\[ {} x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = x^{3} \]

6041

\[ {} -\left (2+3 x \right ) y+\left (2-x \right ) x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]