| # | ODE | Mathematica | Maple | Sympy |
| \[
{} 3 x^{2} y+y^{3}+\left (x^{3}+3 x y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}+\left (x +2\right ) {\mathrm e}^{y} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = {\mathrm e}^{\frac {y^{\prime }}{y}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x = \ln \left (y^{\prime }\right )+\sin \left (y^{\prime }\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x {y^{\prime }}^{2} = {\mathrm e}^{\frac {1}{y^{\prime }}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x = \sin \left (y^{\prime }\right )+y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = y^{\prime } \left (1+y^{\prime } \cos \left (y^{\prime }\right )\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = \arcsin \left (y^{\prime }\right )+\ln \left (1+{y^{\prime }}^{2}\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = 2 x y^{\prime }+\sin \left (y^{\prime }\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = x {y^{\prime }}^{2}-\frac {1}{y^{\prime }}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = \frac {3 x y^{\prime }}{2}+{\mathrm e}^{y^{\prime }}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = x y^{\prime }+\frac {a}{{y^{\prime }}^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x {y^{\prime }}^{2}-y y^{\prime }-y^{\prime }+1 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = x y^{\prime }+a \sqrt {1+{y^{\prime }}^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x = \frac {y}{y^{\prime }}+\frac {1}{{y^{\prime }}^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2} \left (1+{y^{\prime }}^{2}\right )-4 y y^{\prime }-4 x = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}-4 y y^{\prime } x +8 y^{2} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (x y^{\prime }+y\right )^{2}+3 x^{5} \left (-2 y+x y^{\prime }\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 8 {y^{\prime }}^{3}-12 {y^{\prime }}^{2} = 27 y-27 x
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y = {y^{\prime }}^{2}-x y^{\prime }+x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = x y^{\prime }+\sqrt {a^{2} {y^{\prime }}^{2}+b^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 5 x y-4 y^{2}-6 x^{2}+\left (y^{2}-8 x y+\frac {5 x^{2}}{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 x y^{2}-x^{2}+\left (3 x^{2} y-6 y^{2}-1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {1}{2 x -y^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {1}{x^{2}-x y+y^{2}} = \frac {y^{\prime }}{2 y^{2}-x y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{n} y^{\prime } = 2 x y^{\prime }-y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \sin \left (\ln \left (x \right )\right )-\cos \left (\ln \left (y\right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (5 x -7 y+1\right ) y^{\prime }+x +y-1 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {2 \left (y+2\right )^{2}}{\left (x +y-1\right )^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+x {y^{\prime }}^{2}-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime }+{y^{\prime }}^{2} = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = \sqrt {1-{y^{\prime }}^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = y^{\prime } \ln \left (y^{\prime }\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 3 y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = 2 y y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 3 y^{\prime } y^{\prime \prime } = 2 y
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 2 y^{\prime \prime } = 3 y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime }+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = {y^{\prime }}^{2}+y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = 1+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y y^{\prime \prime } = 1+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{3} y^{\prime \prime } = -1
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = {\mathrm e}^{2 y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y y^{\prime \prime }-3 {y^{\prime }}^{2} = 4 y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime } = 3 y y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 2 y^{\prime \prime }-3 y^{\prime }-2 y = 5 \,{\mathrm e}^{x} \cosh \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y^{\prime } = x^{2}-{\mathrm e}^{-x}+{\mathrm e}^{x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 y-4 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{-x} \left (9 x^{2}+5 x -12\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (2 x +1\right )^{2} y^{\prime \prime \prime }+2 \left (2 x +1\right ) y^{\prime \prime }+y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+x \right )^{3} y^{\prime \prime }+3 \left (1+x \right )^{2} y^{\prime }+\left (1+x \right ) y = 6 \ln \left (1+x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x -2\right )^{2} y^{\prime \prime }-3 \left (x -2\right ) y^{\prime }+4 y = x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (2 x +1\right ) y^{\prime \prime }+\left (4 x -2\right ) y^{\prime }-8 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x -3\right ) y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (2 x^{2}+3 x \right ) y^{\prime \prime }-6 y^{\prime } \left (1+x \right )+6 y = 6
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} \left (\ln \left (x \right )-1\right ) y^{\prime \prime }-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\left (\tan \left (x \right )-2 \cot \left (x \right )\right ) y^{\prime }+2 \cot \left (x \right )^{2} y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }-y = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = \left (x -1\right )^{2} {\mathrm e}^{x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y^{\prime }+y \,{\mathrm e}^{-2 x} = {\mathrm e}^{-3 x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{4}-x^{3}\right ) y^{\prime \prime }+\left (2 x^{3}-2 x^{2}-x \right ) y^{\prime }-y = \frac {\left (x -1\right )^{2}}{x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-y^{\prime }+y \,{\mathrm e}^{2 x} = x \,{\mathrm e}^{2 x}-1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x \left (x -1\right ) y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+2 y = x^{2} \left (2 x -3\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y^{\prime } = \frac {1}{{\mathrm e}^{x}+1}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y = \frac {1}{\sqrt {\sin \left (x \right )^{5} \cos \left (x \right )}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x^{2}+1}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x \ln \left (x \right ) y^{\prime \prime }-y^{\prime } = \ln \left (x \right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }+\left (2 x -1\right ) y^{\prime } = -4 x^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 x y^{\prime \prime }+2 y^{\prime }+y = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 x y^{\prime \prime }+2 y^{\prime }+y = \frac {x +6}{x^{2}}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} -y+x y^{\prime }+\left (1-x \right ) y^{\prime \prime } = \left (x -1\right )^{2} {\mathrm e}^{x}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 2 x^{2} \left (2-\ln \left (x \right )\right ) y^{\prime \prime }+x \left (4-\ln \left (x \right )\right ) y^{\prime }-y = \frac {\left (2-\ln \left (x \right )\right )^{2}}{\sqrt {x}}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\frac {2 y^{\prime }}{x}-y = 4 \,{\mathrm e}^{x}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{3} \left (\ln \left (x \right )-1\right ) y^{\prime \prime }-x^{2} y^{\prime }+x y = 2 \ln \left (x \right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-2 \left (1-x \right ) y = -2+2 x
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }+{x^{\prime }}^{2}+x = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }-2 {x^{\prime }}^{2}+x^{\prime }-2 x = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }-x \,{\mathrm e}^{x^{\prime }} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }+{\mathrm e}^{-x^{\prime }}-x = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }+x {x^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }+\left (x+2\right ) x^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }-x^{\prime }+x-x^{2} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 1+{y^{\prime }}^{2}+y y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }+\sin \left (x \right ) y = x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime }+x \sin \left (y\right ) = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-x y^{\prime }+y = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left [x_{1}^{\prime }\left (t \right ) = -2 t x_{1} \left (t \right )^{2}, x_{2}^{\prime }\left (t \right ) = \frac {x_{2} \left (t \right )+t}{t}\right ]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} [x_{1}^{\prime }\left (t \right ) = {\mathrm e}^{t -x_{1} \left (t \right )}, x_{2}^{\prime }\left (t \right ) = 2 \,{\mathrm e}^{x_{1} \left (t \right )}]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left [x^{\prime }\left (t \right ) = \frac {y \left (t \right )+t}{x \left (t \right )+y \left (t \right )}, y^{\prime }\left (t \right ) = \frac {x \left (t \right )-t}{x \left (t \right )+y \left (t \right )}\right ]
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left [x^{\prime }\left (t \right ) = \frac {-y \left (t \right )+t}{-x \left (t \right )+y \left (t \right )}, y^{\prime }\left (t \right ) = \frac {x \left (t \right )-t}{-x \left (t \right )+y \left (t \right )}\right ]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left [x^{\prime }\left (t \right ) = \frac {y \left (t \right )+t}{x \left (t \right )+y \left (t \right )}, y^{\prime }\left (t \right ) = \frac {t +x \left (t \right )}{x \left (t \right )+y \left (t \right )}\right ]
\]
|
✗ |
✓ |
✗ |
|
| \[
{} [x^{\prime \prime }\left (t \right ) = x \left (t \right )^{2}+y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right ) x^{\prime }\left (t \right )+x \left (t \right )]
\]
|
✗ |
✓ |
✗ |
|