| # | ODE | Mathematica | Maple | Sympy |
| \[
{} \frac {2 x}{y}-\frac {3 y^{2}}{x^{4}}+\left (\frac {2 y}{x^{3}}-\frac {x^{2}}{y^{2}}+\frac {1}{\sqrt {y}}\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 9 \sqrt {x}\, y^{{4}/{3}}-12 x^{{1}/{5}} y^{{3}/{2}}+\left (8 x^{{3}/{2}} y^{{1}/{3}}-15 x^{{6}/{5}} \sqrt {y}\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = t x \left (t \right )-{\mathrm e}^{t} y \left (t \right )+\cos \left (t \right ), y^{\prime }\left (t \right ) = {\mathrm e}^{-t} x \left (t \right )+t^{2} y \left (t \right )-\sin \left (t \right )]
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \frac {2 x}{y}-\frac {3 y^{2}}{x^{4}}+\left (\frac {2 y}{x^{3}}-\frac {x^{2}}{y^{2}}+\frac {1}{\sqrt {y}}\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 9 \sqrt {x}\, y^{{4}/{3}}-12 x^{{1}/{5}} y^{{3}/{2}}+\left (8 x^{{3}/{2}} y^{{1}/{3}}-15 x^{{6}/{5}} \sqrt {y}\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (2 x +1\right ) y^{\prime \prime }-2 \left (2 x^{2}-1\right ) y^{\prime }-4 \left (1+x \right ) y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = 1+y+y^{2} \cos \left (t \right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = 1+y+y^{2} \cos \left (t \right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = t y^{a}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 2 x +y+\left (4 x +2 y+1\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y \left (x +y^{2}\right )+x \left (x -y^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 1+x y \left (x y^{2}+1\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{2}+\left (x^{3}-2 x y\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{3}+2 x^{2} y+\left (-3 x^{3}-2 x y^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = y^{3}+{y^{\prime }}^{2}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (1+{y^{\prime }}^{2}\right )^{2} = y^{2} y^{\prime \prime }
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 3 {y^{\prime }}^{4} x = {y^{\prime }}^{3} y+1
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y y^{\prime } x = \left (1+x \right ) \left (1+y\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \cos \left (y\right )-x \sin \left (y\right ) y^{\prime } = \sec \left (x \right )^{2}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}+y^{2} = y y^{\prime } x
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y = x y^{\prime }-x^{2} {y^{\prime }}^{3}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 2 {y^{\prime }}^{3}-3 {y^{\prime }}^{2}+x = y
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime }+f \left (x \right )^{2} = f^{\prime }\left (x \right )+y^{2}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x y^{\prime } = y+a \sqrt {y^{2}+b^{2} x^{2}}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}-x y^{\prime }+a y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}+2 x y^{\prime }-y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}-2 x y^{\prime }-y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}+{\mathrm e}^{3 x -2 y} \left (y^{\prime }-1\right ) = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}+{\mathrm e}^{-2 y} \left ({\mathrm e}^{2 x}+{\mathrm e}^{3 x}\right ) y^{\prime }-{\mathrm e}^{3 x -2 y} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}+a_{0} {y^{\prime }}^{2}+a_{1} y^{\prime }+a_{2} +a_{3} y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 2 {y^{\prime }}^{3}+x y^{\prime }-2 y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 8 {y^{\prime }}^{3}+12 {y^{\prime }}^{2} = 27 x +27 y
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{6} {y^{\prime }}^{3}-x y^{\prime }-y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{2} {y^{\prime }}^{3}-x y^{\prime }+y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{3} {y^{\prime }}^{3}-\left (1-3 x \right ) y^{2} {y^{\prime }}^{2}+3 x^{2} y y^{\prime }+x^{3}-y^{2} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{4}+x y^{\prime }-3 y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (a +b \cos \left (2 x \right )+k \cos \left (4 x \right )\right ) y+y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (\operatorname {a0} +\operatorname {a1} \cos \left (x \right )^{2}+\operatorname {a2} \csc \left (x \right )^{2}\right ) y+y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} a \left (1+k \right ) x^{k -1} y+a \,x^{k} y^{\prime }+y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (b +k^{2} \cos \left (x \right )^{2}\right ) y+a \cot \left (x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} c y+a \cot \left (b x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (\operatorname {a0} -\operatorname {a2} \operatorname {csch}\left (x \right )^{2}+4 \operatorname {a1} \sinh \left (x \right )^{2}\right ) y+\coth \left (x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (\operatorname {a0} +4 \operatorname {a1} \cosh \left (x \right )^{2}-\operatorname {a2} \operatorname {sech}\left (x \right )^{2}\right ) y+\tanh \left (x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (b x +a \right ) y+2 \left (1-2 x \right ) y^{\prime }+4 \left (1-x \right ) x y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (c \,x^{2}+b x +a \right ) y+2 \left (1-2 x \right ) y^{\prime }+4 \left (1-x \right ) x y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (k^{2} x +b \right ) y+2 \left (a x +1\right ) y^{\prime }+4 \left (1-x \right ) x y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (c \,x^{2}+b x +a \right ) y+x^{2} y^{\prime }+x^{3} y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y+x \left (1+x \right ) y^{\prime }+x \left (x^{2}+1\right ) y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (c \,x^{4}+b \,x^{2}+a \right ) y+x^{3} y^{\prime }+x^{4} y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} -a^{2} y-2 x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} b y+a x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y b^{2}+x \left (a^{2}+2 x^{2}\right ) y^{\prime }+x^{2} \left (a^{2}+x^{2}\right )^{2} y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (\operatorname {a4} \,x^{4}+\operatorname {a2} \,x^{2}+\operatorname {a0} \right ) y-2 x \left (a^{2}-x^{2}\right ) y^{\prime }+\left (a^{2}-x^{2}\right )^{2} y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} -\left (a \left (a +1\right ) \left (1-x \right )+b^{2} x \right ) y+2 \left (1-3 x \right ) \left (1-x \right ) x y^{\prime }+4 x^{2} \left (-x^{2}+1\right ) y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (\operatorname {a0} +\operatorname {a1} \cos \left (x \right )^{2}\right ) y+a^{2} \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+\left (1-a^{2} \cos \left (x \right )^{2}\right ) y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = f \left (x \right ) y^{2}+y^{3}+y \left (-2 f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )+\left (3 f \left (x \right )-y\right ) y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = f \left (x \right ) y^{2}-y^{3}+\left (f \left (x \right )-3 y\right ) y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left ({\mathrm e}^{2 y}+x \right ) {y^{\prime }}^{3}+y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime } = \sqrt {b y^{2}+a \,x^{2} {y^{\prime }}^{2}}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime } = f \left (\frac {x y^{\prime }}{y}\right ) y
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 2 f \left (x \right )^{2} y^{\prime \prime } = 2 f \left (x \right )^{2} y^{3}+f \left (x \right ) y^{2} f^{\prime }\left (x \right )+f \left (x \right ) \left (-2 f \left (x \right ) y+3 f^{\prime }\left (x \right )\right ) y^{\prime }+y \left (-2 f \left (x \right )^{3}-2 {f^{\prime }\left (x \right )}^{2}+f \left (x \right ) f^{\prime \prime }\left (x \right )\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} a x +y {y^{\prime }}^{2}+y^{2} y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} a^{2} y+\left (x^{2}+y^{2}\right )^{2} y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \sqrt {y}\, y^{\prime \prime } = 2 b x +2 a
\]
|
✗ |
✓ |
✗ |
|
| \[
{} a y^{2}+x^{3} y^{\prime } y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \operatorname {f5} y^{2}+\operatorname {f4} y y^{\prime }+\operatorname {f3} {y^{\prime }}^{2}+\operatorname {f2} y y^{\prime \prime }+\operatorname {f1} y^{\prime } y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} a x -2 y^{\prime } y^{\prime \prime }+x {y^{\prime \prime }}^{2} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} h y^{2}+\operatorname {g1} y y^{\prime }+\operatorname {g0} {y^{\prime }}^{2}+\operatorname {f2} y y^{\prime \prime }+\operatorname {f1} y^{\prime } y^{\prime \prime }+\operatorname {f0} {y^{\prime \prime }}^{2} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2} \left (1-b^{2} {y^{\prime }}^{2}\right )+2 b^{2} y {y^{\prime }}^{2} y^{\prime \prime }+\left (a^{2}-b^{2} y^{2}\right ) {y^{\prime \prime }}^{2} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} {y^{\prime \prime }}^{3} = 12 y^{\prime } \left (x y^{\prime \prime }-2 y^{\prime }\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} f \left (\frac {y^{\prime \prime }}{y^{\prime }}\right ) y^{\prime } = {y^{\prime }}^{2}-y y^{\prime \prime }
\]
|
✗ |
✓ |
✗ |
|
| \[
{} f \left (y^{\prime \prime }, y^{\prime }-x y^{\prime \prime }, y-x y^{\prime }+\frac {x^{2} y^{\prime \prime }}{2}\right ) = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x y+3 y^{\prime }+x y^{\prime \prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 10 y^{\prime }+8 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime } = y^{\prime } \left (1+y^{\prime }\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x +y+\left (3 x +3 y-4\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = 2 y y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y y^{\prime }+y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y y^{\prime }+y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y y^{\prime }+y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y y^{\prime }+y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \frac {2}{\sqrt {-x^{2}+1}}+y \cos \left (x y\right )+\left (x \cos \left (x y\right )-\frac {1}{y^{{1}/{3}}}\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}-4 x^{4} y^{\prime }+8 x^{3} y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (1+2 y+3 y^{2}\right ) y^{\prime \prime \prime }+6 y^{\prime } \left (y^{\prime \prime }+{y^{\prime }}^{2}+3 y y^{\prime \prime }\right ) = x
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 3 x \left (y^{2} y^{\prime \prime \prime }+6 y y^{\prime } y^{\prime \prime }+2 {y^{\prime }}^{3}\right )-3 y \left (y y^{\prime \prime }+2 {y^{\prime }}^{2}\right ) = -\frac {2}{x}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime \prime }+3 y^{\prime } y^{\prime \prime }-2 y y^{\prime \prime }-2 {y^{\prime }}^{2}+y y^{\prime } = {\mathrm e}^{2 x}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 2 y^{\prime \prime }-3 y^{2} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = y^{2}-4
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = -\frac {5+8 x}{3 y^{2}+1}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = -\frac {5+8 x}{3 y^{2}+1}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = -\frac {5+8 x}{3 y^{2}+1}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = -\frac {5+8 x}{3 y^{2}+1}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{2}+2 x y-y^{2}+\left (y^{2}+2 x y-x^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\sin \left (y\right ) = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\sin \left (y\right ) = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = y^{2} y^{\prime }+{y^{\prime }}^{2}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = {\mathrm e}^{y} y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y = x^{6} {y^{\prime }}^{3}-x y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 2 {y^{\prime }}^{3}+x y^{\prime }-2 y = 0
\]
|
✗ |
✓ |
✗ |
|