4.3.14 Problems 1301 to 1400

Table 4.391: Second order ode

#

ODE

Mathematica

Maple

Sympy

5897

\[ {} x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

5898

\[ {} -a^{2} x^{3} y-y^{\prime }+x y^{\prime \prime } = 0 \]

5899

\[ {} \left ({\mathrm e}^{x^{2}}-k^{2}\right ) x^{3} y-y^{\prime }+x y^{\prime \prime } = 0 \]

5900

\[ {} 2 y^{\prime }+x y^{\prime \prime } = 0 \]

5901

\[ {} 2 y^{\prime }+x y^{\prime \prime } = 0 \]

5902

\[ {} -x y+2 y^{\prime }+x y^{\prime \prime } = {\mathrm e}^{x} \]

5903

\[ {} a x y+2 y^{\prime }+x y^{\prime \prime } = 0 \]

5904

\[ {} a \,x^{2} y+2 y^{\prime }+x y^{\prime \prime } = 0 \]

5905

\[ {} a y^{\prime }+x y^{\prime \prime } = 0 \]

5906

\[ {} y+\left (a +1\right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5907

\[ {} y+\left (1-a \right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5908

\[ {} -y+\left (a +1\right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5909

\[ {} -y+2 n y^{\prime }+x y^{\prime \prime } = 0 \]

5910

\[ {} b y+a y^{\prime }+x y^{\prime \prime } = 0 \]

5911

\[ {} b x y+a y^{\prime }+x y^{\prime \prime } = 0 \]

5912

\[ {} \left (\operatorname {b2} x +\operatorname {b1} \right ) y+a y^{\prime }+x y^{\prime \prime } = 0 \]

5913

\[ {} \left (\operatorname {c1} \,x^{2}+\operatorname {b1} x +\operatorname {a1} \right ) y+a y^{\prime }+x y^{\prime \prime } = 0 \]

5914

\[ {} b \,x^{k} y+a y^{\prime }+x y^{\prime \prime } = 0 \]

5915

\[ {} y-y^{\prime } \left (1+x \right )+x y^{\prime \prime } = 0 \]

5916

\[ {} n y+\left (1-x \right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5917

\[ {} n y+\left (1+k -x \right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5918

\[ {} 2 \left (1-x \right ) y-y^{\prime } \left (1+x \right )+x y^{\prime \prime } = 0 \]

5919

\[ {} -y-\left (2-x \right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5920

\[ {} y-\left (x +3\right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5921

\[ {} 3 y-\left (x +3\right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5922

\[ {} b y+\left (x +a \right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5923

\[ {} -a y+\left (c -x \right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5924

\[ {} -\left (1-x \right ) y+\left (1-2 x \right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5925

\[ {} x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = 0 \]

5926

\[ {} x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = x^{2}-x -1 \]

5927

\[ {} c y+\left (b x +a \right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5928

\[ {} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+\left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5929

\[ {} \left (b x +2 a \right ) y-2 \left (b x +a \right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5930

\[ {} \left (a b x +a n +b m \right ) y+\left (m +n +x \left (a +b \right )\right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5931

\[ {} -y^{\prime } \left (-x^{2}+1\right )+x y^{\prime \prime } = 0 \]

5932

\[ {} 2 x y-\left (-x^{2}+4\right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5933

\[ {} x^{3} y-\left (2 x^{2}+1\right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5934

\[ {} -8 x^{3} y-\left (2 x^{2}+1\right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5935

\[ {} -8 x^{3} y-\left (2 x^{2}+1\right ) y^{\prime }+x y^{\prime \prime } = 4 x^{3} {\mathrm e}^{-x^{2}} \]

5936

\[ {} 4 x \left (x^{2}+1\right ) y+\left (4 x^{2}+1\right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5937

\[ {} a \,x^{2} \left (a \,x^{3}+1\right ) y-\left (-2 a \,x^{3}+1\right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5938

\[ {} f \left (x \right ) y+\left (2+f \left (x \right ) x \right ) y^{\prime }+x y^{\prime \prime } = 0 \]

5939

\[ {} -y+x y^{\prime }+\left (1-x \right ) y^{\prime \prime } = 0 \]

5940

\[ {} -y+x y^{\prime }+\left (1-x \right ) y^{\prime \prime } = \left (1-x \right )^{2} \]

5941

\[ {} 3 \left (2-x \right ) y-\left (9-4 x \right ) y^{\prime }+\left (3-x \right ) y^{\prime \prime } = 0 \]

5942

\[ {} -2 y^{\prime }+\left (a -x \right ) y^{\prime \prime } = 0 \]

5943

\[ {} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+\left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+\left (x +a \right ) y^{\prime \prime } = 0 \]

5944

\[ {} y^{\prime }+2 x y^{\prime \prime } = 0 \]

5945

\[ {} a y+y^{\prime }+2 x y^{\prime \prime } = 0 \]

5946

\[ {} -a y+y^{\prime }+2 x y^{\prime \prime } = 0 \]

5947

\[ {} \left (b x +a \right ) y+y^{\prime }+2 x y^{\prime \prime } = 0 \]

5948

\[ {} -x y-\left (2 x^{2}+1\right ) y^{\prime }+2 x y^{\prime \prime } = 0 \]

5949

\[ {} -y-\left (x +2\right ) y^{\prime }+\left (1-2 x \right ) y^{\prime \prime } = 0 \]

5950

\[ {} \left (3-x \right ) y-\left (4-3 x \right ) y^{\prime }+\left (1-2 x \right ) y^{\prime \prime } = 0 \]

5951

\[ {} y+2 y^{\prime }+4 y^{\prime \prime } = 0 \]

5952

\[ {} -y-2 y^{\prime }+4 y^{\prime \prime } = 0 \]

5953

\[ {} y+4 \coth \left (x \right ) y^{\prime }+4 x y^{\prime \prime } = 0 \]

5954

\[ {} \left (b x +a \right ) y+8 y^{\prime }+16 x y^{\prime \prime } = 0 \]

5955

\[ {} c y^{\prime }+\left (b x +a \right ) y^{\prime \prime } = 0 \]

5956

\[ {} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+\left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+\left (\operatorname {b0} x +\operatorname {a0} \right ) y^{\prime \prime } = 0 \]

5957

\[ {} y-x y^{\prime }+\left (1-x \cot \left (x \right )\right ) y^{\prime \prime } = 0 \]

5958

\[ {} x^{2} y^{\prime \prime } = b x +a \]

5959

\[ {} x^{2} y^{\prime \prime } = 2 y \]

5960

\[ {} x^{2} y^{\prime \prime } = 6 y \]

5961

\[ {} x^{2} y^{\prime \prime } = 12 y \]

5962

\[ {} a y+x^{2} y^{\prime \prime } = 0 \]

5963

\[ {} \left (b x +a \right ) y+x^{2} y^{\prime \prime } = 0 \]

5964

\[ {} -\left (-x^{2}+2\right ) y+x^{2} y^{\prime \prime } = 0 \]

5965

\[ {} -\left (-x^{2}+2\right ) y+x^{2} y^{\prime \prime } = x^{4} \]

5966

\[ {} -\left (a^{2} x^{2}+2\right ) y+x^{2} y^{\prime \prime } = 0 \]

5967

\[ {} -\left (-a^{2} x^{2}+6\right ) y+x^{2} y^{\prime \prime } = 0 \]

5968

\[ {} -\left (n \left (n +1\right )+a^{2} x^{2}\right ) y+x^{2} y^{\prime \prime } = 0 \]

5969

\[ {} -\left (\left (n -1\right ) n -a^{2} x^{2}\right ) y+x^{2} y^{\prime \prime } = 0 \]

5970

\[ {} \left (c \,x^{2}+b x +a \right ) y+x^{2} y^{\prime \prime } = 0 \]

5971

\[ {} -\left (\left (a -1\right ) a -b \,x^{k}\right ) y+x^{2} y^{\prime \prime } = 0 \]

5972

\[ {} x^{k} \left (a +b \,x^{k}\right ) y+x^{2} y^{\prime \prime } = 0 \]

5973

\[ {} -b \left (b \,x^{2}+a \right ) y+a y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

5974

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

5975

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

5976

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

5977

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{2} a \]

5978

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+y = x^{2} \left (x +3\right ) \]

5979

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+y = 3 x^{3} \]

5980

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y = \ln \left (x \right ) \]

5981

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

5982

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+2 y = x \ln \left (x \right ) \]

5983

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }-3 y = 0 \]

5984

\[ {} -a^{2} y+x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

5985

\[ {} \left (b x +a \right ) y+x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

5986

\[ {} -\left (p^{2}-x^{2}\right ) y+x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

5987

\[ {} -\left (p^{2}+x^{2}\right ) y+x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

5988

\[ {} -\left (i x^{2}+p^{2}\right ) y+x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

5989

\[ {} -\left (-a^{2} x^{2}+p^{2}\right ) y+x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

5990

\[ {} -\left (c \,x^{2}+b x +a \right ) y+x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

5991

\[ {} -\left (-x^{4}+4 x^{2} a +n^{2}\right ) y+x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

5992

\[ {} -\left (c^{2} x^{4}+b^{2} x^{2}+a^{2}\right ) y+x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

5993

\[ {} \left (1+m \right ) x^{m} a \left (m \right ) y+x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

5994

\[ {} -y+\left (x +a \right ) y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

5995

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

5996

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 4 x^{3} \]