4.3.86 Problems 8501 to 8600

Table 4.535: Second order ode

#

ODE

Mathematica

Maple

Sympy

24661

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = 20 \cos \left (x \right ) \]

24662

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = 2 \cos \left (x \right )+4 \sin \left (x \right ) \]

24663

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 7+75 \sin \left (2 x \right ) \]

24664

\[ {} 5 y+4 y^{\prime }+y^{\prime \prime } = 50 x +13 \,{\mathrm e}^{3 x} \]

24665

\[ {} y^{\prime \prime }+y = \cos \left (x \right ) \]

24666

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{2 x} \]

24667

\[ {} y^{\prime \prime }-y = {\mathrm e}^{-x} \left (2 \sin \left (x \right )+4 \cos \left (x \right )\right ) \]

24668

\[ {} y^{\prime \prime }-y = 8 x \,{\mathrm e}^{x} \]

24674

\[ {} y^{\prime \prime }-y = 10 \sin \left (x \right )^{2} \]

24675

\[ {} y^{\prime \prime }+y = 12 \cos \left (x \right )^{2} \]

24676

\[ {} y^{\prime \prime }+4 y = 4 \sin \left (x \right )^{2} \]

24677

\[ {} y^{\prime \prime }+y = 10 \,{\mathrm e}^{2 x} \]

24678

\[ {} y^{\prime \prime }-4 y = 2-8 x \]

24679

\[ {} y^{\prime \prime }+3 y^{\prime } = -18 x \]

24680

\[ {} 5 y+4 y^{\prime }+y^{\prime \prime } = 10 \,{\mathrm e}^{-3 x} \]

24681

\[ {} x^{\prime \prime }+4 x^{\prime }+5 x = 10 \]

24682

\[ {} x^{\prime \prime }+4 x^{\prime }+5 x = 8 \sin \left (t \right ) \]

24683

\[ {} y^{\prime \prime }+2 y^{\prime }+y = x \]

24684

\[ {} y^{\prime \prime }+2 y^{\prime }+y = x \]

24685

\[ {} 4 y^{\prime \prime }+y = 2 \]

24686

\[ {} 2 y^{\prime \prime }-5 y^{\prime }-3 y = -9 x^{2}-1 \]

24687

\[ {} y^{\prime \prime }+y^{\prime } = 1+x \]

24688

\[ {} y^{\prime \prime }+y = x^{3} \]

24689

\[ {} y^{\prime \prime }+y = 2 \cos \left (x \right ) \]

24691

\[ {} y^{\prime \prime }+y^{\prime } = 2-2 x \]

24692

\[ {} y^{\prime \prime }+9 y = \sin \left (3 x \right ) \]

24693

\[ {} y^{\prime \prime }+a^{2} y = \sin \left (b x \right ) \]

24694

\[ {} y^{\prime \prime }+a^{2} y = \sin \left (a x \right ) \]

24695

\[ {} y^{\prime \prime }+9 y = 4 \cos \left (x \right ) \]

24696

\[ {} y^{\prime \prime }+9 y = 15 \cos \left (2 x \right ) \]

24697

\[ {} y^{\prime \prime }+9 y = 18 x -3+20 \,{\mathrm e}^{x} \]

24698

\[ {} y^{\prime \prime }-y^{\prime } = 42 \,{\mathrm e}^{4 x} \]

24699

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = {\mathrm e}^{2 x} \]

24700

\[ {} y^{\prime \prime }+6 y^{\prime }+14 y = 42 \,{\mathrm e}^{x}-7 \]

24701

\[ {} y^{\prime \prime }+y = {\mathrm e}^{3 x} \]

24702

\[ {} y^{\prime \prime }+y = 1+4 x \]

24703

\[ {} y^{\prime \prime }+y = \sin \left (2 x \right ) \]

24704

\[ {} y^{\prime \prime }+y = \cos \left (2 x \right ) \]

24705

\[ {} y^{\prime \prime }+y = {\mathrm e}^{x}-x +\sin \left (3 x \right ) \]

24706

\[ {} y^{\prime \prime }-y = 2 x -3 \]

24707

\[ {} y^{\prime \prime }-y = x +\sin \left (x \right ) \]

24708

\[ {} y^{\prime \prime }-y = {\mathrm e}^{2 x} \]

24709

\[ {} y^{\prime \prime }-y = 16 \,{\mathrm e}^{3 x} \]

24710

\[ {} y^{\prime \prime }-y = \cos \left (4 x \right ) \]

24711

\[ {} y^{\prime \prime }+y^{\prime }+y = 6 \,{\mathrm e}^{x} \]

24712

\[ {} y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{-x} \]

24713

\[ {} y^{\prime \prime }+y^{\prime }+y = 4-{\mathrm e}^{2 x} \]

24714

\[ {} y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{-x} \]

24715

\[ {} y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{2 x} \]

24716

\[ {} y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{3 x} \]

24717

\[ {} 4 y^{\prime \prime }-y = {\mathrm e}^{x} \]

24718

\[ {} 4 y^{\prime \prime }-y = x \]

24719

\[ {} 4 y^{\prime \prime }-y = x +{\mathrm e}^{x} \]

24720

\[ {} y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{x} \]

24721

\[ {} y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{2 x} \]

24722

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 7+{\mathrm e}^{x}+{\mathrm e}^{2 x} \]

24729

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 x} \]

24730

\[ {} y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \]

24731

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 12 x \,{\mathrm e}^{-2 x} \]

24732

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 3 x \,{\mathrm e}^{-x} \]

24739

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 18 x \,{\mathrm e}^{-x} \]

24740

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 36 x \,{\mathrm e}^{2 x} \]

24741

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 20-3 x \,{\mathrm e}^{2 x} \]

24742

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 4-8 x +6 x \,{\mathrm e}^{2 x} \]

24743

\[ {} y^{\prime \prime }-9 y = 18 x -162 x \,{\mathrm e}^{2 x} \]

24744

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 4 x -6 \,{\mathrm e}^{-2 x}+3 \,{\mathrm e}^{x} \]

24745

\[ {} y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x}+3 x \]

24746

\[ {} y^{\prime \prime }-4 y = 16 x \,{\mathrm e}^{-2 x}+8 x +4 \]

24747

\[ {} y^{\prime \prime }-4 y = 8 x \,{\mathrm e}^{2 x} \]

24748

\[ {} y^{\prime \prime }-9 y = -72 x \,{\mathrm e}^{-3 x} \]

24751

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 48 \,{\mathrm e}^{-x} \cos \left (4 x \right ) \]

24752

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 18 \,{\mathrm e}^{-2 x} \cos \left (3 x \right ) \]

24753

\[ {} y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \sec \left (x \right )^{2} \tan \left (x \right ) \]

24754

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = -\frac {{\mathrm e}^{-2 x}}{x^{2}} \]

24755

\[ {} y^{\prime \prime }-2 a y^{\prime }+a^{2} y = {\mathrm e}^{a x}+f^{\prime \prime }\left (x \right ) \]

24756

\[ {} y^{\prime \prime }+7 y^{\prime }+12 y = {\mathrm e}^{-3 x} \sec \left (x \right )^{2} \left (1+2 \tan \left (x \right )\right ) \]

24757

\[ {} y^{\prime \prime }-y = {\mathrm e}^{2 x} \]

24758

\[ {} y^{\prime \prime }-y = {\mathrm e}^{x} \]

24759

\[ {} y^{\prime \prime }+y = \sin \left (x \right ) \]

24760

\[ {} y^{\prime \prime }+4 y = \cos \left (2 x \right ) \]

24761

\[ {} y^{\prime \prime }+9 y = {\mathrm e}^{2 x} \]

24762

\[ {} y^{\prime \prime }+4 y = {\mathrm e}^{3 x} \]

24763

\[ {} 4 y^{\prime \prime }+y = {\mathrm e}^{-2 x} \]

24764

\[ {} y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{-x} \]

24767

\[ {} y^{\prime \prime }+4 y = \cos \left (3 x \right ) \]

24768

\[ {} y^{\prime \prime }+9 y = \cos \left (3 x \right ) \]

24769

\[ {} y^{\prime \prime }+4 y = \sin \left (2 x \right ) \]

24770

\[ {} y^{\prime \prime }+36 y = \sin \left (6 x \right ) \]

24771

\[ {} y^{\prime \prime }+9 y = \sin \left (3 x \right ) \]

24772

\[ {} y^{\prime \prime }+36 y = \cos \left (6 x \right ) \]

24773

\[ {} y^{\prime \prime }+3 y^{\prime }-4 y = 12 \,{\mathrm e}^{2 x} \]

24774

\[ {} y^{\prime \prime }+3 y^{\prime }-4 y = 21 \,{\mathrm e}^{3 x} \]

24775

\[ {} y^{\prime \prime }+3 y^{\prime }-4 y = 15 \,{\mathrm e}^{x} \]

24776

\[ {} y^{\prime \prime }+3 y^{\prime }-4 y = 20 \,{\mathrm e}^{-4 x} \]

24777

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{x}+{\mathrm e}^{2 x} \]

24778

\[ {} 4 y^{\prime \prime }-y = {\mathrm e}^{\frac {x}{2}}+12 \,{\mathrm e}^{x} \]

24781

\[ {} y^{\prime \prime }+16 y = 14 \cos \left (3 x \right ) \]

24782

\[ {} 4 y^{\prime \prime }+y = 33 \sin \left (3 x \right ) \]

24783

\[ {} y^{\prime \prime }+16 y = 24 \sin \left (4 x \right ) \]

24784

\[ {} y^{\prime \prime }+16 y = 48 \cos \left (4 x \right ) \]