4.7.22 Problems 2101 to 2200

Table 4.791: Solved using series method

#

ODE

Mathematica

Maple

Sympy

23798

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+12 y = 0 \]

23799

\[ {} x^{2} y^{\prime \prime }+\left (1-x \right ) y^{\prime }+2 y = 0 \]

23800

\[ {} \left (1+x \right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+x y = 0 \]

23801

\[ {} x^{3} y^{\prime \prime }-\left (1+x \right ) y = 0 \]

23802

\[ {} \left (x +3\right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

23803

\[ {} \left (x +3\right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

23804

\[ {} y^{\prime \prime }-2 x y^{\prime }+4 y = 0 \]

23805

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]

23806

\[ {} y^{\prime \prime }-2 \left (x +2\right ) y^{\prime }+4 y = 0 \]

23807

\[ {} \left (-x^{2}+4 x -3\right ) y^{\prime \prime }-2 \left (x -2\right ) y^{\prime }+6 y = 0 \]

23808

\[ {} y-x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

23809

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+4 y = 0 \]

23810

\[ {} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

23811

\[ {} y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+2 y = 0 \]

23812

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

23813

\[ {} \left (x^{2}+4 x +3\right ) y^{\prime \prime }+2 \left (x +2\right ) y^{\prime }-2 y = 0 \]

23814

\[ {} y^{\prime \prime }-x y = 0 \]

23815

\[ {} y^{\prime \prime }-x y = 0 \]

23816

\[ {} \left (x^{2}+2\right ) y^{\prime \prime }-3 y^{\prime }+\left (x -1\right ) y = 0 \]

23817

\[ {} x y^{\prime \prime }-2 y^{\prime } \left (1+x \right )+2 y = 0 \]

23818

\[ {} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

23819

\[ {} y^{\prime \prime }-2 x y^{\prime }+4 y = 0 \]

23820

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]

23821

\[ {} y-x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

23822

\[ {} y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+2 y = 0 \]

23823

\[ {} y^{\prime \prime }+y^{\prime } \left (1+x \right )-y = 0 \]

23824

\[ {} y^{\prime \prime }+y^{\prime } \left (1+x \right )-y = 0 \]

23825

\[ {} x y^{\prime \prime }-2 y^{\prime }+x y = 0 \]

23826

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

23827

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]

23828

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+12 y = 0 \]

23829

\[ {} y-x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

23830

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+4 y = 0 \]

23831

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+9 y = 0 \]

23832

\[ {} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

23833

\[ {} y^{\prime \prime }-2 x y^{\prime }+4 y = 0 \]

23834

\[ {} 6 y-2 x y^{\prime }+y^{\prime \prime } = 0 \]

23835

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{9}\right ) y = 0 \]

23836

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-4\right ) y = 0 \]

23837

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+x^{2} y = 0 \]

23838

\[ {} \left (1-x \right ) x y^{\prime \prime }+\left (\frac {1}{2}-3 x \right ) y^{\prime }-y = 0 \]

23839

\[ {} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 0 \]

23840

\[ {} x^{2} y^{\prime \prime }+4 x \left (1-x \right ) y^{\prime }+2 y = 0 \]

23841

\[ {} x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+\frac {y}{16} = 0 \]

23842

\[ {} x^{2} y^{\prime \prime }+3 x \left (1-x \right ) y^{\prime }+y = 0 \]

23843

\[ {} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+2 y = 0 \]

23844

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y \left (x^{2}-1\right ) = 0 \]

23845

\[ {} x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

23846

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (-p^{2}+x^{2}\right ) y = 0 \]

23847

\[ {} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+3 y = 0 \]

23848

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{16}\right ) y = 0 \]

23849

\[ {} x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+y = 0 \]

23850

\[ {} x^{2} y^{\prime \prime }-\left (x^{3}+x^{2}+x \right ) y^{\prime }+\left (1+4 x \right ) y = 0 \]

23851

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{9}\right ) y = 0 \]

23852

\[ {} \left (1-x \right ) x y^{\prime \prime }+\left (\frac {2}{3}-3 x \right ) y^{\prime }-y = 0 \]

23853

\[ {} \left (x -1\right ) y^{\prime \prime }+\left (2-x \right ) y^{\prime }+y = 0 \]

23854

\[ {} x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

23855

\[ {} \left (1+x \right )^{2} y^{\prime \prime }-\left (x +3\right ) y = 0 \]

23856

\[ {} \left (x -1\right )^{2} y^{\prime \prime }-\left (1+x \right ) y = 0 \]

23857

\[ {} x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+y = 0 \]

23858

\[ {} 2 \left (x +3\right )^{2} y^{\prime \prime }-\left (x^{2}+5 x +6\right ) y^{\prime }-y = 0 \]

23859

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{9}\right ) y = 0 \]

23860

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+x^{2} y = 0 \]

23861

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

23862

\[ {} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 0 \]

23863

\[ {} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+2 y = 0 \]

23864

\[ {} x y^{\prime \prime }-\left (x -1\right ) y^{\prime }+3 y = 0 \]

23865

\[ {} \left (1-x \right ) x y^{\prime \prime }+\left (\frac {1}{2}-3 x \right ) y^{\prime }-y = 0 \]

23866

\[ {} \left (1-x \right ) x y^{\prime \prime }+\left (\frac {3}{4}-4 x \right ) y^{\prime }-2 y = 0 \]

23867

\[ {} \left (x -1\right ) \left (x +2\right ) y^{\prime \prime }+\left (x +\frac {1}{2}\right ) y^{\prime }+2 y = 0 \]

23868

\[ {} \left (x^{2}-\frac {1}{4}\right ) y^{\prime \prime }+2 y^{\prime }-6 y = 0 \]

24194

\[ {} 4 y^{\prime \prime }+x^{2} y^{\prime }-x y = 0 \]

24195

\[ {} y^{\prime \prime }-2 x y^{\prime }+y = 0 \]

24196

\[ {} y^{\prime } \left (-x^{2}+1\right )+3 x y = 0 \]

24197

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+20 y = 0 \]

24198

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+56 y = 0 \]

24199

\[ {} 4 \left (-x^{2}+1\right ) y^{\prime \prime }-8 x y^{\prime }+3 y = 0 \]

24200

\[ {} \left (x^{2}+2\right ) y^{\prime \prime }+3 x y^{\prime }-y = 0 \]

24201

\[ {} y^{\prime \prime }+3 x^{3} y^{\prime }+x^{2} y = 0 \]

24202

\[ {} \left (x^{3}+8\right ) y^{\prime \prime }+3 x^{2} y^{\prime }+x y = 0 \]

24203

\[ {} \left (x^{3}-8\right ) y^{\prime \prime }-4 x y = 0 \]

24204

\[ {} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 y = 0 \]

24205

\[ {} \left (-x^{4}+1\right ) y^{\prime \prime \prime }-24 x y = 0 \]

24206

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

24207

\[ {} x y^{\prime \prime }+y^{\prime }-x^{2} y = 0 \]

24208

\[ {} x^{2} y^{\prime \prime \prime }-y^{\prime }+y = 0 \]

24209

\[ {} x^{4} y^{\prime \prime \prime }+\frac {x^{2} y^{\prime \prime }}{1+x}-\left (1+x \right ) y = 0 \]

24210

\[ {} x^{4} y^{\prime \prime \prime }-\frac {x^{2} y^{\prime }}{1+x}+y = 0 \]

24211

\[ {} x^{2} y^{\prime \prime }+y^{\prime } \sin \left (x \right )-2 y = 0 \]

24212

\[ {} x^{2} y^{\prime }-y = 0 \]

24213

\[ {} x y^{\prime }+\left (1+x \right ) y = 0 \]

24214

\[ {} x^{2} y^{\prime \prime }+5 x y^{\prime }-5 y = 0 \]

24215

\[ {} 2 x y^{\prime \prime }+y^{\prime }+y = 0 \]

24216

\[ {} 25 x^{2} y^{\prime \prime }+\left (2 x +4\right ) y = 0 \]

24217

\[ {} x^{2} y^{\prime \prime }-\left (3 x^{4}+5 x \right ) y^{\prime }+\left (6 x^{3}+5\right ) y = 0 \]

24218

\[ {} 6 x^{2} y^{\prime \prime }+\left (x^{3}+11 x \right ) y^{\prime }+\left (-2 x^{2}+1\right ) y = 0 \]

24219

\[ {} x^{2} \left (1+x \right ) y^{\prime \prime }-3 x y^{\prime }+\left (3-2 x \right ) y = 0 \]

24220

\[ {} y^{\prime \prime }+x^{2} y^{\prime }+2 x y = x^{3}-x +3 \]

24221

\[ {} x^{2} y^{\prime \prime }+\left (-4 x^{3}+x \right ) y^{\prime }-x^{2} y = 0 \]

24222

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+\left (-x^{2}+9\right ) y = 0 \]