| # | ODE | Mathematica | Maple | Sympy |
| \[
{} x^{2} y^{\prime \prime }+\left (x^{2}-x \right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+5 x y^{\prime }+\left (2 x +4\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+2 y^{\prime }-3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+2 x^{4} y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x^{2} y^{\prime \prime }+8 x y^{\prime }+\left (2 x -3\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 9 x^{2} y^{\prime \prime }+\left (x^{2}-15 x \right ) y^{\prime }+7 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+\left (x^{2}-5 x \right ) y^{\prime }+\left (5-6 x \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = 2 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 y+x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-y = x^{2}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-y = x^{2}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-7 y = -x^{4}+2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+k^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-3 y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-t^{2}+1\right ) y^{\prime \prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (t -1\right ) y^{\prime \prime }-t y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (t^{2}+1\right ) y^{\prime \prime }-4 t y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-t^{2}+1\right ) y^{\prime \prime }-6 t y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\frac {t y^{\prime }}{-t^{2}+1}+\frac {y}{t +1} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\frac {\left (1-t \right ) y^{\prime }}{t}+\frac {\left (1-\cos \left (t \right )\right ) y}{t^{3}} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+3 t \left (1-t \right ) y^{\prime }+\frac {\left (1-{\mathrm e}^{t}\right ) y}{t} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\frac {y^{\prime }}{t}+\frac {\left (1-t \right ) y}{t^{3}} = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} t y^{\prime \prime }+\left (1-t \right ) y^{\prime }+4 t y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 t y^{\prime \prime }+y^{\prime }+t y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }+2 t y^{\prime }+t^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }+t \,{\mathrm e}^{t} y^{\prime }+4 \left (1-4 t \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} t y^{\prime \prime }+\left (1-t \right ) y^{\prime }+\lambda y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }+3 t \left (1+3 t \right ) y^{\prime }+\left (-t^{2}+1\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime \prime }-2 y^{\prime }+t y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 t^{2} y^{\prime \prime }-t y^{\prime }+\left (t +1\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }-t \left (t +1\right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 t^{2} y^{\prime \prime }-t y^{\prime }+\left (1-t \right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }+t^{2} y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }+2 t y^{\prime }-a \,t^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime \prime }+\left (t -1\right ) y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime \prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} \left (1-t \right ) y^{\prime \prime }+\left (t^{2}+t \right ) y^{\prime }+\left (1-2 t \right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }+t \left (t +1\right ) y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }+t \left (1-2 t \right ) y^{\prime }+\left (t^{2}-t +1\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} \left (t +1\right ) y^{\prime \prime }-t \left (2 t +1\right ) y^{\prime }+\left (2 t +1\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime \prime }+2 \left (i t -k \right ) y^{\prime }-2 i k y = 0
\]
|
✓ |
✓ |
✓ |
|