4.7.23 Problems 2201 to 2246

Table 4.793: Solved using series method

#

ODE

Mathematica

Maple

Sympy

24223

\[ {} x^{2} y^{\prime \prime }+\left (x^{2}-x \right ) y^{\prime }+y = 0 \]

24224

\[ {} x^{2} y^{\prime \prime }+5 x y^{\prime }+\left (2 x +4\right ) y = 0 \]

24225

\[ {} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+2 y = 0 \]

24226

\[ {} x y^{\prime \prime }+2 y^{\prime }-3 y = 0 \]

24227

\[ {} x^{2} y^{\prime \prime }+2 x^{4} y^{\prime }-2 y = 0 \]

24228

\[ {} 4 x^{2} y^{\prime \prime }+8 x y^{\prime }+\left (2 x -3\right ) y = 0 \]

24229

\[ {} 9 x^{2} y^{\prime \prime }+\left (x^{2}-15 x \right ) y^{\prime }+7 y = 0 \]

24230

\[ {} x^{2} y^{\prime \prime }+\left (x^{2}-5 x \right ) y^{\prime }+\left (5-6 x \right ) y = 0 \]

24231

\[ {} y^{\prime } = 2 y \]

24232

\[ {} y^{\prime } = 2 y+x \]

24233

\[ {} y^{\prime }-y = x^{2}+1 \]

24234

\[ {} y^{\prime }-y = x^{2}+1 \]

24235

\[ {} y^{\prime }-7 y = -x^{4}+2 \]

25441

\[ {} y^{\prime \prime }-y = 0 \]

25442

\[ {} y^{\prime \prime }-2 y^{\prime }+y = 0 \]

25443

\[ {} y^{\prime \prime }+k^{2} y = 0 \]

25444

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

25445

\[ {} \left (-t^{2}+1\right ) y^{\prime \prime }+2 y = 0 \]

25446

\[ {} \left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

25447

\[ {} \left (t -1\right ) y^{\prime \prime }-t y^{\prime }+y = 0 \]

25448

\[ {} \left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

25449

\[ {} \left (t^{2}+1\right ) y^{\prime \prime }-4 t y^{\prime }+6 y = 0 \]

25450

\[ {} \left (-t^{2}+1\right ) y^{\prime \prime }-6 t y^{\prime }-4 y = 0 \]

25451

\[ {} y^{\prime \prime }+\frac {t y^{\prime }}{-t^{2}+1}+\frac {y}{t +1} = 0 \]

25452

\[ {} y^{\prime \prime }+\frac {\left (1-t \right ) y^{\prime }}{t}+\frac {\left (1-\cos \left (t \right )\right ) y}{t^{3}} = 0 \]

25453

\[ {} y^{\prime \prime }+3 t \left (1-t \right ) y^{\prime }+\frac {\left (1-{\mathrm e}^{t}\right ) y}{t} = 0 \]

25454

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{t}+\frac {\left (1-t \right ) y}{t^{3}} = 0 \]

25455

\[ {} t y^{\prime \prime }+\left (1-t \right ) y^{\prime }+4 t y = 0 \]

25456

\[ {} 2 t y^{\prime \prime }+y^{\prime }+t y = 0 \]

25457

\[ {} t^{2} y^{\prime \prime }+2 t y^{\prime }+t^{2} y = 0 \]

25458

\[ {} t^{2} y^{\prime \prime }+t \,{\mathrm e}^{t} y^{\prime }+4 \left (1-4 t \right ) y = 0 \]

25459

\[ {} t y^{\prime \prime }+\left (1-t \right ) y^{\prime }+\lambda y = 0 \]

25460

\[ {} t^{2} y^{\prime \prime }+3 t \left (1+3 t \right ) y^{\prime }+\left (-t^{2}+1\right ) y = 0 \]

25462

\[ {} t y^{\prime \prime }-2 y^{\prime }+t y = 0 \]

25463

\[ {} 2 t^{2} y^{\prime \prime }-t y^{\prime }+\left (t +1\right ) y = 0 \]

25464

\[ {} t^{2} y^{\prime \prime }-t \left (t +1\right ) y^{\prime }+y = 0 \]

25465

\[ {} 2 t^{2} y^{\prime \prime }-t y^{\prime }+\left (1-t \right ) y = 0 \]

25466

\[ {} t^{2} y^{\prime \prime }+t^{2} y^{\prime }-2 y = 0 \]

25467

\[ {} t^{2} y^{\prime \prime }+2 t y^{\prime }-a \,t^{2} y = 0 \]

25468

\[ {} t y^{\prime \prime }+\left (t -1\right ) y^{\prime }-2 y = 0 \]

25469

\[ {} t y^{\prime \prime }-4 y = 0 \]

25470

\[ {} t^{2} \left (1-t \right ) y^{\prime \prime }+\left (t^{2}+t \right ) y^{\prime }+\left (1-2 t \right ) y = 0 \]

25471

\[ {} t^{2} y^{\prime \prime }+t \left (t +1\right ) y^{\prime }-y = 0 \]

25472

\[ {} t^{2} y^{\prime \prime }+t \left (1-2 t \right ) y^{\prime }+\left (t^{2}-t +1\right ) y = 0 \]

25473

\[ {} t^{2} \left (t +1\right ) y^{\prime \prime }-t \left (2 t +1\right ) y^{\prime }+\left (2 t +1\right ) y = 0 \]

25474

\[ {} t y^{\prime \prime }+2 \left (i t -k \right ) y^{\prime }-2 i k y = 0 \]