2.2.125 Problems 12401 to 12500

Table 2.251: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

12401

\[ {}x^{\prime \prime \prime }+x^{\prime \prime } = 0 \]

[[_3rd_order, _missing_x]]

0.053

12402

\[ {}x^{\prime \prime \prime }-x^{\prime }-8 x = 0 \]

[[_3rd_order, _missing_x]]

0.103

12403

\[ {}x^{\prime \prime \prime }+x^{\prime \prime } = 2 \,{\mathrm e}^{t}+3 t^{2} \]

[[_3rd_order, _missing_y]]

0.124

12404

\[ {}x^{\prime \prime \prime }-8 x = 0 \]

[[_3rd_order, _missing_x]]

0.070

12405

\[ {}x^{\prime \prime \prime }+x^{\prime \prime }-x^{\prime }-4 x = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.297

12406

\[ {}x^{\prime }+5 x = \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.308

12407

\[ {}x^{\prime }+x = \sin \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.325

12408

\[ {}x^{\prime \prime }-x^{\prime }-6 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.300

12409

\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.308

12410

\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.365

12411

\[ {}x^{\prime \prime }-x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.213

12412

\[ {}x^{\prime \prime }+\frac {2 x^{\prime }}{5}+2 x = 1-\operatorname {Heaviside}\left (t -5\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.583

12413

\[ {}x^{\prime \prime }+9 x = \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.352

12414

\[ {}x^{\prime \prime }-2 x = 1 \]
i.c.

[[_2nd_order, _missing_x]]

0.324

12415

\[ {}x^{\prime } = 2 x+\operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.278

12416

\[ {}x^{\prime \prime }+4 x = \cos \left (2 t \right ) \operatorname {Heaviside}\left (2 \pi -t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.461

12417

\[ {}x^{\prime } = x-2 \operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.292

12418

\[ {}x^{\prime } = -x+\operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.340

12419

\[ {}x^{\prime \prime }+\pi ^{2} x = \pi ^{2} \operatorname {Heaviside}\left (1-t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.522

12420

\[ {}x^{\prime \prime }-4 x = 1-\operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.338

12421

\[ {}x^{\prime \prime }+3 x^{\prime }+2 x = {\mathrm e}^{-4 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.280

12422

\[ {}x^{\prime }+3 x = \delta \left (t -1\right )+\operatorname {Heaviside}\left (t -4\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.353

12423

\[ {}x^{\prime \prime }-x = \delta \left (t -5\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.250

12424

\[ {}x^{\prime \prime }+x = \delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.266

12425

\[ {}x^{\prime \prime }+4 x = \delta \left (t -2\right )-\delta \left (t -5\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.485

12426

\[ {}x^{\prime \prime }+x = 3 \delta \left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.415

12427

\[ {}y^{\prime \prime }+y^{\prime }+y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.320

12428

\[ {}x^{\prime \prime }+4 x = \frac {\left (t -5\right ) \operatorname {Heaviside}\left (t -5\right )}{5}+\left (2-\frac {t}{5}\right ) \operatorname {Heaviside}\left (t -10\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.502

12429

\[ {}\left [\begin {array}{c} x^{\prime }=-3 y \\ y^{\prime }=2 x \end {array}\right ] \]

system_of_ODEs

0.387

12430

\[ {}\left [\begin {array}{c} x^{\prime }=-2 y \\ y^{\prime }=-4 x \end {array}\right ] \]

system_of_ODEs

0.374

12431

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x \\ y^{\prime }=2 y \end {array}\right ] \]

system_of_ODEs

0.244

12432

\[ {}\left [\begin {array}{c} x^{\prime }=4 y \\ y^{\prime }=2 y \end {array}\right ] \]

system_of_ODEs

0.256

12433

\[ {}\left [\begin {array}{c} x^{\prime }=x \\ y^{\prime }=x+2 y \end {array}\right ] \]

system_of_ODEs

0.263

12434

\[ {}\left [\begin {array}{c} x^{\prime }=x-y \\ y^{\prime }=x+y \end {array}\right ] \]

system_of_ODEs

0.327

12435

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y \\ y^{\prime }=x \end {array}\right ] \]

system_of_ODEs

0.295

12436

\[ {}\left [\begin {array}{c} x^{\prime }=-x-2 y \\ y^{\prime }=2 x-y \end {array}\right ] \]

system_of_ODEs

0.339

12437

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x-3 y \\ y^{\prime }=-x+4 y \end {array}\right ] \]

system_of_ODEs

0.508

12438

\[ {}\left [\begin {array}{c} x^{\prime }=-3 y \\ y^{\prime }=-2 x+y \end {array}\right ] \]

system_of_ODEs

0.315

12439

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x \\ y^{\prime }=x \end {array}\right ] \]

system_of_ODEs

0.260

12440

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x-y \\ y^{\prime }=-4 y \end {array}\right ] \]

system_of_ODEs

0.279

12441

\[ {}\left [\begin {array}{c} x^{\prime }=x-2 y \\ y^{\prime }=-2 x+4 y \end {array}\right ] \]

system_of_ODEs

0.288

12442

\[ {}\left [\begin {array}{c} x^{\prime }=-6 y \\ y^{\prime }=6 y \end {array}\right ] \]

system_of_ODEs

0.252

12443

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+3 y \\ y^{\prime }=-x-14 \end {array}\right ] \]

system_of_ODEs

0.954

12444

\[ {}\left [\begin {array}{c} x^{\prime }=3 y-3 x \\ y^{\prime }=x+2 y-1 \end {array}\right ] \]

system_of_ODEs

0.760

12445

\[ {}\left [\begin {array}{c} x^{\prime }=-x+y \\ y^{\prime }=-3 y \end {array}\right ] \]

system_of_ODEs

0.288

12446

\[ {}\left [\begin {array}{c} x^{\prime }=x \\ y^{\prime }=3 x-4 y \end {array}\right ] \]

system_of_ODEs

0.286

12447

\[ {}\left [\begin {array}{c} x^{\prime }=-x+y \\ y^{\prime }=x-2 y \end {array}\right ] \]

system_of_ODEs

0.479

12448

\[ {}\left [\begin {array}{c} x^{\prime }=x+y \\ y^{\prime }=3 y-3 x \end {array}\right ] \]

system_of_ODEs

0.585

12449

\[ {}\left [\begin {array}{c} x^{\prime }=x-2 y \\ y^{\prime }=3 x-4 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.414

12450

\[ {}\left [\begin {array}{c} x^{\prime }=5 x-y \\ y^{\prime }=3 x+y \end {array}\right ] \]
i.c.

system_of_ODEs

0.470

12451

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x+y \\ y^{\prime }=-3 y \end {array}\right ] \]

system_of_ODEs

0.253

12452

\[ {}\left [\begin {array}{c} x^{\prime }=x-y \\ y^{\prime }=x+3 y \end {array}\right ] \]

system_of_ODEs

0.271

12453

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y \\ y^{\prime }=3 x+2 y \end {array}\right ] \]

system_of_ODEs

0.312

12454

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x+4 y \\ y^{\prime }=-3 y \end {array}\right ] \]

system_of_ODEs

0.255

12455

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+2 y \\ y^{\prime }=6 x+3 y \end {array}\right ] \]

system_of_ODEs

0.310

12456

\[ {}\left [\begin {array}{c} x^{\prime }=-5 x+3 y \\ y^{\prime }=2 x-10 y \end {array}\right ] \]

system_of_ODEs

0.310

12457

\[ {}\left [\begin {array}{c} x^{\prime }=2 x \\ y^{\prime }=2 y \end {array}\right ] \]

system_of_ODEs

0.206

12458

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-2 y \\ y^{\prime }=4 x-y \end {array}\right ] \]

system_of_ODEs

0.440

12459

\[ {}\left [\begin {array}{c} x^{\prime }=5 x-4 y \\ y^{\prime }=x+y \end {array}\right ] \]

system_of_ODEs

0.274

12460

\[ {}\left [\begin {array}{c} x^{\prime }=9 y \\ y^{\prime }=-x \end {array}\right ] \]

system_of_ODEs

0.328

12461

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+y \\ y^{\prime }=-x \end {array}\right ] \]
i.c.

system_of_ODEs

0.373

12462

\[ {}\left [\begin {array}{c} x^{\prime }=x-2 y \\ y^{\prime }=-2 x+4 y \end {array}\right ] \]

system_of_ODEs

0.285

12463

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-y+1 \\ y^{\prime }=x+y+2 \end {array}\right ] \]
i.c.

system_of_ODEs

0.563

12464

\[ {}\left [\begin {array}{c} x^{\prime }=-5 x+3 y+{\mathrm e}^{-t} \\ y^{\prime }=2 x-10 y \end {array}\right ] \]

system_of_ODEs

0.487

12465

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=-x+\cos \left (w t \right ) \end {array}\right ] \]

system_of_ODEs

0.638

12466

\[ {}\left [\begin {array}{c} x^{\prime }=3 x+2 y+3 \\ y^{\prime }=7 x+5 y+2 t \end {array}\right ] \]

system_of_ODEs

0.858

12467

\[ {}\left [\begin {array}{c} x^{\prime }=x-3 y \\ y^{\prime }=3 x+7 y \end {array}\right ] \]

system_of_ODEs

0.286

12468

\[ {}y^{\prime }+y = x +1 \]

[[_linear, ‘class A‘]]

0.962

12469

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 0 \]

[[_2nd_order, _missing_x]]

0.722

12470

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 4 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.033

12471

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.938

12472

\[ {}2 x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

3.875

12473

\[ {}y^{\prime } x +y = x^{3} y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.170

12474

\[ {}y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

1.560

12475

\[ {}y^{\prime }+4 y x = 8 x \]

[_separable]

0.969

12476

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 0 \]

[[_2nd_order, _missing_x]]

0.724

12477

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-4 y^{\prime }+8 y = 0 \]

[[_3rd_order, _missing_x]]

0.063

12478

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0 \]

[[_3rd_order, _missing_x]]

0.066

12479

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-10 y^{\prime } x -8 y = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

0.116

12480

\[ {}y^{\prime }+2 y = 6 \,{\mathrm e}^{x}+4 x \,{\mathrm e}^{-2 x} \]

[[_linear, ‘class A‘]]

1.340

12481

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = -8 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.217

12482

\[ {}{y^{\prime }}^{2}-4 y = 0 \]

[_quadrature]

0.490

12483

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.941

12484

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x} \]
i.c.

[[_linear, ‘class A‘]]

1.683

12485

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x} \]
i.c.

[[_linear, ‘class A‘]]

1.723

12486

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.939

12487

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.405

12488

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.429

12489

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.982

12490

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

0.172

12491

\[ {}y^{\prime } = x^{2} \sin \left (y\right ) \]
i.c.

[_separable]

4.848

12492

\[ {}y^{\prime } = \frac {y^{2}}{x -2} \]
i.c.

[_separable]

2.164

12493

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

0.671

12494

\[ {}3 x +2 y+\left (2 x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.417

12495

\[ {}y^{2}+3+\left (2 y x -4\right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

1.322

12496

\[ {}2 y x +1+\left (x^{2}+4 y\right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.089

12497

\[ {}3 x^{2} y+2-\left (x^{3}+y\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.667

12498

\[ {}6 y x +2 y^{2}-5+\left (3 x^{2}+4 y x -6\right ) y^{\prime } = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.438

12499

\[ {}y \sec \left (x \right )^{2}+\sec \left (x \right ) \tan \left (x \right )+\left (\tan \left (x \right )+2 y\right ) y^{\prime } = 0 \]

[_exact, [_Abel, ‘2nd type‘, ‘class A‘]]

13.809

12500

\[ {}\frac {x}{y^{2}}+x +\left (\frac {x^{2}}{y^{3}}+y\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2.199