# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}x^{\prime \prime \prime }+x^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.053 |
|
\[
{}x^{\prime \prime \prime }-x^{\prime }-8 x = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.103 |
|
\[
{}x^{\prime \prime \prime }+x^{\prime \prime } = 2 \,{\mathrm e}^{t}+3 t^{2}
\] |
[[_3rd_order, _missing_y]] |
✓ |
0.124 |
|
\[
{}x^{\prime \prime \prime }-8 x = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.070 |
|
\[
{}x^{\prime \prime \prime }+x^{\prime \prime }-x^{\prime }-4 x = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.297 |
|
\[
{}x^{\prime }+5 x = \operatorname {Heaviside}\left (t -2\right )
\] |
[[_linear, ‘class A‘]] |
✓ |
0.308 |
|
\[
{}x^{\prime }+x = \sin \left (2 t \right )
\] |
[[_linear, ‘class A‘]] |
✓ |
0.325 |
|
\[
{}x^{\prime \prime }-x^{\prime }-6 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.300 |
|
\[
{}x^{\prime \prime }-2 x^{\prime }+2 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.308 |
|
\[
{}x^{\prime \prime }-2 x^{\prime }+2 x = {\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.365 |
|
\[
{}x^{\prime \prime }-x^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.213 |
|
\[
{}x^{\prime \prime }+\frac {2 x^{\prime }}{5}+2 x = 1-\operatorname {Heaviside}\left (t -5\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.583 |
|
\[
{}x^{\prime \prime }+9 x = \sin \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.352 |
|
\[
{}x^{\prime \prime }-2 x = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.324 |
|
\[
{}x^{\prime } = 2 x+\operatorname {Heaviside}\left (t -1\right )
\] |
[[_linear, ‘class A‘]] |
✓ |
0.278 |
|
\[
{}x^{\prime \prime }+4 x = \cos \left (2 t \right ) \operatorname {Heaviside}\left (2 \pi -t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.461 |
|
\[
{}x^{\prime } = x-2 \operatorname {Heaviside}\left (t -1\right )
\] |
[[_linear, ‘class A‘]] |
✓ |
0.292 |
|
\[
{}x^{\prime } = -x+\operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right )
\] |
[[_linear, ‘class A‘]] |
✓ |
0.340 |
|
\[
{}x^{\prime \prime }+\pi ^{2} x = \pi ^{2} \operatorname {Heaviside}\left (1-t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.522 |
|
\[
{}x^{\prime \prime }-4 x = 1-\operatorname {Heaviside}\left (t -1\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.338 |
|
\[
{}x^{\prime \prime }+3 x^{\prime }+2 x = {\mathrm e}^{-4 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.280 |
|
\[
{}x^{\prime }+3 x = \delta \left (t -1\right )+\operatorname {Heaviside}\left (t -4\right )
\] |
[[_linear, ‘class A‘]] |
✓ |
0.353 |
|
\[
{}x^{\prime \prime }-x = \delta \left (t -5\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.250 |
|
\[
{}x^{\prime \prime }+x = \delta \left (t -2\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.266 |
|
\[
{}x^{\prime \prime }+4 x = \delta \left (t -2\right )-\delta \left (t -5\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.485 |
|
\[
{}x^{\prime \prime }+x = 3 \delta \left (t -2 \pi \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.415 |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = \delta \left (t -1\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.320 |
|
\[
{}x^{\prime \prime }+4 x = \frac {\left (t -5\right ) \operatorname {Heaviside}\left (t -5\right )}{5}+\left (2-\frac {t}{5}\right ) \operatorname {Heaviside}\left (t -10\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.502 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-3 y \\ y^{\prime }=2 x \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.387 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-2 y \\ y^{\prime }=-4 x \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.374 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-3 x \\ y^{\prime }=2 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.244 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=4 y \\ y^{\prime }=2 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.256 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x \\ y^{\prime }=x+2 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.263 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x-y \\ y^{\prime }=x+y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.327 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x+2 y \\ y^{\prime }=x \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.295 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-x-2 y \\ y^{\prime }=2 x-y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.339 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-2 x-3 y \\ y^{\prime }=-x+4 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.508 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-3 y \\ y^{\prime }=-2 x+y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.315 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-2 x \\ y^{\prime }=x \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.260 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-2 x-y \\ y^{\prime }=-4 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.279 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x-2 y \\ y^{\prime }=-2 x+4 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.288 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-6 y \\ y^{\prime }=6 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.252 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=2 x+3 y \\ y^{\prime }=-x-14 \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.954 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=3 y-3 x \\ y^{\prime }=x+2 y-1 \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.760 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-x+y \\ y^{\prime }=-3 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.288 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x \\ y^{\prime }=3 x-4 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.286 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-x+y \\ y^{\prime }=x-2 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.479 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x+y \\ y^{\prime }=3 y-3 x \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.585 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x-2 y \\ y^{\prime }=3 x-4 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.414 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=5 x-y \\ y^{\prime }=3 x+y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.470 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-3 x+y \\ y^{\prime }=-3 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.253 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x-y \\ y^{\prime }=x+3 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.271 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x+2 y \\ y^{\prime }=3 x+2 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.312 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-3 x+4 y \\ y^{\prime }=-3 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.255 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=2 x+2 y \\ y^{\prime }=6 x+3 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.310 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-5 x+3 y \\ y^{\prime }=2 x-10 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.310 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=2 x \\ y^{\prime }=2 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.206 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=3 x-2 y \\ y^{\prime }=4 x-y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.440 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=5 x-4 y \\ y^{\prime }=x+y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.274 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=9 y \\ y^{\prime }=-x \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.328 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=2 x+y \\ y^{\prime }=-x \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.373 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x-2 y \\ y^{\prime }=-2 x+4 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.285 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=3 x-y+1 \\ y^{\prime }=x+y+2 \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.563 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-5 x+3 y+{\mathrm e}^{-t} \\ y^{\prime }=2 x-10 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.487 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=-x+\cos \left (w t \right ) \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.638 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=3 x+2 y+3 \\ y^{\prime }=7 x+5 y+2 t \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.858 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x-3 y \\ y^{\prime }=3 x+7 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.286 |
|
\[
{}y^{\prime }+y = x +1
\] |
[[_linear, ‘class A‘]] |
✓ |
0.962 |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+12 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.722 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 4 x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.033 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.938 |
|
\[
{}2 x y y^{\prime }+x^{2}+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
3.875 |
|
\[
{}y^{\prime } x +y = x^{3} y^{3}
\] |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
2.170 |
|
\[
{}y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x}
\] |
[[_linear, ‘class A‘]] |
✓ |
1.560 |
|
\[
{}y^{\prime }+4 y x = 8 x
\] |
[_separable] |
✓ |
0.969 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-8 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.724 |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }-4 y^{\prime }+8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.063 |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.066 |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-10 y^{\prime } x -8 y = 0
\] |
[[_3rd_order, _fully, _exact, _linear]] |
✓ |
0.116 |
|
\[
{}y^{\prime }+2 y = 6 \,{\mathrm e}^{x}+4 x \,{\mathrm e}^{-2 x}
\] |
[[_linear, ‘class A‘]] |
✓ |
1.340 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = -8 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.217 |
|
\[
{}{y^{\prime }}^{2}-4 y = 0
\] |
[_quadrature] |
✓ |
0.490 |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.941 |
|
\[
{}y^{\prime }+y = 2 x \,{\mathrm e}^{-x}
\] |
[[_linear, ‘class A‘]] |
✓ |
1.683 |
|
\[
{}y^{\prime }+y = 2 x \,{\mathrm e}^{-x}
\] |
[[_linear, ‘class A‘]] |
✓ |
1.723 |
|
\[
{}y^{\prime \prime }-y^{\prime }-12 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.939 |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✗ |
1.405 |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✗ |
1.429 |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.982 |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
0.172 |
|
\[
{}y^{\prime } = x^{2} \sin \left (y\right )
\] |
[_separable] |
✓ |
4.848 |
|
\[
{}y^{\prime } = \frac {y^{2}}{x -2}
\] |
[_separable] |
✓ |
2.164 |
|
\[
{}y^{\prime } = y^{{1}/{3}}
\] |
[_quadrature] |
✓ |
0.671 |
|
\[
{}3 x +2 y+\left (2 x +y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
3.417 |
|
\[
{}y^{2}+3+\left (2 y x -4\right ) y^{\prime } = 0
\] |
[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
1.322 |
|
\[
{}2 y x +1+\left (x^{2}+4 y\right ) y^{\prime } = 0
\] |
[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
1.089 |
|
\[
{}3 x^{2} y+2-\left (x^{3}+y\right ) y^{\prime } = 0
\] |
[_rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✗ |
0.667 |
|
\[
{}6 y x +2 y^{2}-5+\left (3 x^{2}+4 y x -6\right ) y^{\prime } = 0
\] |
[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
1.438 |
|
\[
{}y \sec \left (x \right )^{2}+\sec \left (x \right ) \tan \left (x \right )+\left (\tan \left (x \right )+2 y\right ) y^{\prime } = 0
\] |
[_exact, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
13.809 |
|
\[
{}\frac {x}{y^{2}}+x +\left (\frac {x^{2}}{y^{3}}+y\right ) y^{\prime } = 0
\] |
[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
2.199 |
|