2.4.8 second order integrable as is

Table 2.441: second order integrable as is

#

ODE

CAS classification

Solved?

11

\[ {}x^{\prime \prime } = 50 \]
i.c.

[[_2nd_order, _quadrature]]

12

\[ {}x^{\prime \prime } = -20 \]
i.c.

[[_2nd_order, _quadrature]]

13

\[ {}x^{\prime \prime } = 3 t \]
i.c.

[[_2nd_order, _quadrature]]

14

\[ {}x^{\prime \prime } = 2 t +1 \]
i.c.

[[_2nd_order, _quadrature]]

15

\[ {}x^{\prime \prime } = 4 \left (3+t \right )^{2} \]
i.c.

[[_2nd_order, _quadrature]]

16

\[ {}x^{\prime \prime } = \frac {1}{\sqrt {t +4}} \]
i.c.

[[_2nd_order, _quadrature]]

17

\[ {}x^{\prime \prime } = \frac {1}{\left (t +1\right )^{3}} \]
i.c.

[[_2nd_order, _quadrature]]

18

\[ {}x^{\prime \prime } = 50 \sin \left (5 t \right ) \]
i.c.

[[_2nd_order, _quadrature]]

147

\[ {}x y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

148

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

150

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

153

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = y^{\prime } y \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

157

\[ {}y^{\prime \prime } = 2 y^{\prime } y \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

221

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

222

\[ {}y^{\prime \prime }-3 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

233

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

236

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

237

\[ {}2 y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

244

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

272

\[ {}2 y^{\prime \prime }-3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

376

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 72 x^{5} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

813

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

814

\[ {}y^{\prime \prime }-3 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

825

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

826

\[ {}2 y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

833

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

846

\[ {}2 y^{\prime \prime }-3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

902

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 72 x^{5} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1253

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

1260

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1294

\[ {}t^{2} y^{\prime \prime }+4 t y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1296

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1330

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1345

\[ {}t^{2} y^{\prime \prime }-2 y = 3 t^{2}-1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1352

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }+5 y = t \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1742

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

1746

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1754

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1811

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 2 x^{2}+2 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1828

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-3 y = x^{{3}/{2}} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1837

\[ {}\left (x -1\right )^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 2 x \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1839

\[ {}\left (x +1\right ) \left (2 x +3\right ) y^{\prime \prime }+2 \left (x +2\right ) y^{\prime }-2 y = \left (2 x +3\right )^{2} \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2362

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

2400

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2433

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2435

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2543

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

2581

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2591

\[ {}t^{2} y^{\prime \prime }-2 y = t^{2} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2607

\[ {}y^{\prime \prime }+2 y^{\prime } = 1+t^{2}+{\mathrm e}^{-2 t} \]

[[_2nd_order, _missing_y]]

2629

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2631

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

3089

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

3141

\[ {}2 y^{\prime \prime }+y^{\prime } = 8 \sin \left (2 x \right )+{\mathrm e}^{-x} \]
i.c.

[[_2nd_order, _missing_y]]

3217

\[ {}y^{\prime \prime }+2 y^{\prime } = x^{3} \sin \left (2 x \right ) \]

[[_2nd_order, _missing_y]]

3218

\[ {}y^{\prime \prime }-y^{\prime } = x \,{\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

3220

\[ {}y^{\prime \prime }+2 y^{\prime } = x^{2} {\mathrm e}^{-x} \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

3228

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 1-x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3244

\[ {}y^{\prime \prime } = \cos \left (t \right ) \]

[[_2nd_order, _quadrature]]

3249

\[ {}x y^{\prime \prime } = x^{2}+1 \]

[[_2nd_order, _quadrature]]

3250

\[ {}\left (1-x \right ) y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

3251

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (y^{\prime }+1\right ) = 0 \]

[[_2nd_order, _missing_y]]

3253

\[ {}x y^{\prime \prime }+x = y^{\prime } \]

[[_2nd_order, _missing_y]]

3260

\[ {}y^{\prime \prime } = y^{\prime } y \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3262

\[ {}y^{\prime \prime }+y^{\prime } y = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3264

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3267

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = y^{\prime } y \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3272

\[ {}y^{\prime \prime } = \tan \left (x \right ) \sec \left (x \right ) \]
i.c.

[[_2nd_order, _quadrature]]

3284

\[ {}\left (1-{\mathrm e}^{x}\right ) y^{\prime \prime } = {\mathrm e}^{x} y^{\prime } \]
i.c.

[[_2nd_order, _missing_y]]

3494

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+3 \left (x +1\right ) y^{\prime }+y = x^{2} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3565

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

3575

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

3584

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

[[_2nd_order, _quadrature]]

3585

\[ {}y^{\prime \prime } = x^{n} \]

[[_2nd_order, _quadrature]]

3587

\[ {}y^{\prime \prime } = \cos \left (x \right ) \]
i.c.

[[_2nd_order, _quadrature]]

3589

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]
i.c.

[[_2nd_order, _quadrature]]

3699

\[ {}y^{\prime \prime }+4 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

3708

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

3773

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 4 \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3774

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = \cos \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

4124

\[ {}2 y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

4127

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

4426

\[ {}x y^{\prime \prime } = x +y^{\prime } \]

[[_2nd_order, _missing_y]]

4484

\[ {}y^{\prime \prime }-y^{\prime } = {\mathrm e}^{x} \left (x^{2}+10\right ) \]

[[_2nd_order, _missing_y]]

4508

\[ {}y^{\prime \prime }+y^{\prime } = \frac {1}{1+{\mathrm e}^{x}} \]

[[_2nd_order, _missing_y]]

5916

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

5945

\[ {}y^{\prime \prime } = 0 \]
i.c.

[[_2nd_order, _quadrature]]

5958

\[ {}y^{\prime \prime }-3 y^{\prime } = 2 \,{\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

5959

\[ {}y^{\prime \prime }+y^{\prime } = x^{2}+2 x \]

[[_2nd_order, _missing_y]]

5960

\[ {}y^{\prime \prime }+y^{\prime } = x +\sin \left (2 x \right ) \]

[[_2nd_order, _missing_y]]

5991

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = x \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

5993

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

5994

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = \frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

5995

\[ {}y^{\prime \prime } = 2 y^{\prime } y \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

5999

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} \]

[[_2nd_order, _missing_y]]

6004

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}-y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6009

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (y^{\prime }+1\right ) = 0 \]

[[_2nd_order, _missing_y]]

6012

\[ {}y^{\prime \prime } = 2 y^{\prime } y \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6015

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

6017

\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2}-y^{\prime } y = 0 \]

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6137

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

6142

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

6151

\[ {}y^{\prime \prime }-4 y^{\prime } = 10 \]

[[_2nd_order, _missing_x]]

6172

\[ {}2 y^{\prime \prime }+y^{\prime } = 2 x \]

[[_2nd_order, _missing_y]]

6182

\[ {}y^{\prime \prime }-2 y^{\prime } = 9 x \,{\mathrm e}^{-x}-6 x^{2}+4 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _missing_y]]

6183

\[ {}y^{\prime \prime }+y^{\prime } y = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6186

\[ {}y^{\prime \prime }+y^{\prime } y = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6197

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x -\frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6219

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

6231

\[ {}x \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right ) = y^{\prime } y \]

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6235

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}+4 = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6409

\[ {}x \left (1-x \right ) y^{\prime \prime }+2 \left (-2 x +1\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

6514

\[ {}y^{\prime \prime } = 9 x^{2}+2 x -1 \]

[[_2nd_order, _quadrature]]

6540

\[ {}y^{\prime \prime }-7 y^{\prime } = -3 \]

[[_2nd_order, _missing_x]]

6541

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6700

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 2 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6713

\[ {}y^{\prime \prime }-4 y^{\prime } = 5 \]

[[_2nd_order, _missing_x]]

6754

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y = \ln \left (x +1\right )^{2}+x -1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6755

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }-12 y = 6 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6774

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime } = \frac {2}{x^{3}} \]

[[_2nd_order, _missing_y]]

6775

\[ {}x y^{\prime \prime }-y^{\prime } = -\frac {2}{x}-\ln \left (x \right ) \]

[[_2nd_order, _missing_y]]

6778

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6783

\[ {}\left (x +2 y\right ) y^{\prime \prime }+2 {y^{\prime }}^{2}+2 y^{\prime } = 2 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

7155

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

7160

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

7166

\[ {}y^{\prime \prime }+x y^{\prime }+y = 2 x \,{\mathrm e}^{x}-1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

7168

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{2}+2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

7170

\[ {}x \left (x +1\right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }-y = x +\frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

7257

\[ {}y^{\prime \prime } = x +2 \]

[[_2nd_order, _quadrature]]

7265

\[ {}y^{\prime \prime } = 3 x +1 \]

[[_2nd_order, _quadrature]]

7291

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

7350

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

7351

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

7352

\[ {}\left (3 x -1\right )^{2} y^{\prime \prime }+\left (9 x -3\right ) y^{\prime }-9 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

7435

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

[[_2nd_order, _missing_x]]

7439

\[ {}y^{\prime \prime } = y^{\prime } y \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

7440

\[ {}x y^{\prime \prime }-2 y^{\prime } = x^{3} \]

[[_2nd_order, _missing_y]]

7499

\[ {}\frac {y^{\prime \prime }}{y^{\prime }} = x^{2} \]

[[_2nd_order, _missing_y]]

7500

\[ {}y^{\prime \prime } y^{\prime } = x \left (x +1\right ) \]

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

7581

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

7587

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

7590

\[ {}y^{\prime \prime } = y^{\prime } {\mathrm e}^{y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

7612

\[ {}x y^{\prime \prime }-3 y^{\prime } = 5 x \]

[[_2nd_order, _missing_y]]

7653

\[ {}y^{\prime \prime }-2 y^{\prime } = 12 x -10 \]

[[_2nd_order, _missing_y]]

7656

\[ {}y^{\prime \prime }+y^{\prime } = 10 x^{4}+2 \]

[[_2nd_order, _missing_y]]

7729

\[ {}y^{\prime \prime } = \tan \left (x \right ) \]
i.c.

[[_2nd_order, _quadrature]]

7730

\[ {}y^{\prime \prime }-2 y^{\prime } = \ln \left (x \right ) \]
i.c.

[[_2nd_order, _missing_y]]

7737

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {2}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

7899

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

7901

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

8038

\[ {}t y^{\prime \prime }-y^{\prime } = 2 t^{2} \]
i.c.

[[_2nd_order, _missing_y]]

8168

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

8172

\[ {}x y^{\prime \prime } = y^{\prime }+x^{5} \]
i.c.

[[_2nd_order, _missing_y]]

8173

\[ {}x y^{\prime \prime }+y^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_y]]

8435

\[ {}t y^{\prime \prime }+4 y^{\prime } = t^{2} \]

[[_2nd_order, _missing_y]]

8436

\[ {}\left (t^{2}+9\right ) y^{\prime \prime }+2 t y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_y]]

8438

\[ {}t y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

8442

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

8443

\[ {}y^{\prime \prime } = 1 \]

[[_2nd_order, _quadrature]]

8445

\[ {}y^{\prime \prime } = k \]

[[_2nd_order, _quadrature]]

8448

\[ {}y^{\prime \prime } = 4 \sin \left (x \right )-4 \]

[[_2nd_order, _quadrature]]

8475

\[ {}y^{\prime \prime } = \frac {1}{y}-\frac {x y^{\prime }}{y^{2}} \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

8748

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

8751

\[ {}a y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

8754

\[ {}y^{\prime \prime } = 1 \]

[[_2nd_order, _quadrature]]

8756

\[ {}y^{\prime \prime } = x \]

[[_2nd_order, _quadrature]]

8759

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

8762

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

[[_2nd_order, _missing_x]]

8765

\[ {}y^{\prime \prime }+y^{\prime } = x \]

[[_2nd_order, _missing_y]]

8778

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

[[_2nd_order, _missing_x]]

8779

\[ {}y^{\prime \prime }+y^{\prime } = x \]

[[_2nd_order, _missing_y]]

8780

\[ {}y^{\prime \prime }+y^{\prime } = x +1 \]

[[_2nd_order, _missing_y]]

8781

\[ {}y^{\prime \prime }+y^{\prime } = x^{2}+x +1 \]

[[_2nd_order, _missing_y]]

8782

\[ {}y^{\prime \prime }+y^{\prime } = x^{3}+x^{2}+x +1 \]

[[_2nd_order, _missing_y]]

8783

\[ {}y^{\prime \prime }+y^{\prime } = \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

8784

\[ {}y^{\prime \prime }+y^{\prime } = \cos \left (x \right ) \]

[[_2nd_order, _missing_y]]

10687

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

10724

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

10775

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

10791

\[ {}x y^{\prime \prime }-x y^{\prime }-y-x \left (x +1\right ) {\mathrm e}^{x} = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

10841

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y-a \,x^{2} = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

10847

\[ {}x^{2} y^{\prime \prime }+\left (x +a \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

10850

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

10857

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y-x \sin \left (x \right )-\left (a \,x^{2}+12 a +4\right ) \cos \left (x \right ) = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

10863

\[ {}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

10865

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }-5 y-x^{2} \ln \left (x \right ) = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

10911

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y-2 \cos \left (x \right )+2 x = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

10912

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+a x y^{\prime }+\left (a -2\right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

10918

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

10919

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+2 x y^{\prime }-a = 0 \]

[[_2nd_order, _missing_y]]

10927

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 \left (v -1\right ) x y^{\prime }-2 v y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

10934

\[ {}x \left (x +1\right ) y^{\prime \prime }+\left (2+3 x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

10936

\[ {}x \left (x -1\right ) y^{\prime \prime }+a y^{\prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

10944

\[ {}x \left (x +3\right ) y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y-\left (20 x +30\right ) \left (x^{2}+3 x \right )^{{7}/{3}} = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

10947

\[ {}\left (-2+x \right )^{2} y^{\prime \prime }-\left (-2+x \right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

10948

\[ {}2 x^{2} y^{\prime \prime }-\left (2 x^{2}+l -5 x \right ) y^{\prime }-\left (4 x -1\right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

10965

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }-12 y-3 x -1 = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

10967

\[ {}\left (3 x -1\right )^{2} y^{\prime \prime }+3 \left (3 x -1\right ) y^{\prime }-9 y-\ln \left (3 x -1\right )^{2} = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

10979

\[ {}\left (a^{2} x^{2}-1\right ) y^{\prime \prime }+2 a^{2} x y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

10981

\[ {}\left (a \,x^{2}+b x \right ) y^{\prime \prime }+2 b y^{\prime }-2 a y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

10992

\[ {}x \left (x^{2}+1\right ) y^{\prime \prime }+2 \left (x^{2}-1\right ) y^{\prime }-2 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

10999

\[ {}x \left (x^{2}+2\right ) y^{\prime \prime }-y^{\prime }-6 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

11109

\[ {}y^{\prime \prime } = -\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}+\frac {y}{\sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11307

\[ {}y^{\prime \prime }-2 a y y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

11343

\[ {}x y^{\prime \prime }+\left (y-1\right ) y^{\prime } = 0 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

11372

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}-a = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

11374

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}-y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

11398

\[ {}y^{\prime \prime } \left (x +y\right )+{y^{\prime }}^{2}-y^{\prime } = 0 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

11434

\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2}-y^{\prime } y = 0 \]

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

11443

\[ {}x \left (x +y\right ) y^{\prime \prime }+x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

12201

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+a y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12232

\[ {}y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (a n \,x^{n -1}+b m \,x^{m -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12245

\[ {}x y^{\prime \prime }+a x y^{\prime }+a y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12258

\[ {}x y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (2 a x +b \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12263

\[ {}x y^{\prime \prime }+x \left (a \,x^{2}+b \right ) y^{\prime }+\left (3 a \,x^{2}+b \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12270

\[ {}x y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+a n \,x^{n -1} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12281

\[ {}\left (x +a \right ) y^{\prime \prime }+\left (b x +c \right ) y^{\prime }+b y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12285

\[ {}\left (x +\gamma \right ) y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }+\left (a n \,x^{n -1}+b m \,x^{m -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12339

\[ {}\left (x^{2}+a \right ) y^{\prime \prime }+2 b x y^{\prime }+2 \left (b -1\right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12351

\[ {}\left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (d x +k \right ) y^{\prime }+\left (d -2 a \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12365

\[ {}x \left (a \,x^{2}+b \right ) y^{\prime \prime }+2 \left (a \,x^{2}+b \right ) y^{\prime }-2 a x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12426

\[ {}\left (a \,x^{n}+b x +c \right ) y^{\prime \prime } = a n \left (n -1\right ) x^{n -2} y \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12472

\[ {}y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}+c \right ) y^{\prime }+\left (a \lambda \,{\mathrm e}^{\lambda x}+b \mu \,{\mathrm e}^{\mu x}\right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12622

\[ {}y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{2 x}+1 \]

[[_2nd_order, _missing_y]]

12626

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (1-x \right )^{2}} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

12667

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

[[_2nd_order, _quadrature]]

12676

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

12677

\[ {}\left (x -1\right )^{2} y^{\prime \prime }+4 \left (x -1\right ) y^{\prime }+2 y = \cos \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

12690

\[ {}y^{\prime \prime }+y^{\prime } y = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

12692

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (4 x +2\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12695

\[ {}x \left (x +2 y\right ) y^{\prime \prime }+2 x {y^{\prime }}^{2}+4 \left (x +y\right ) y^{\prime }+2 y+x^{2} = 0 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

12699

\[ {}\sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 \sin \left (x \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12714

\[ {}x^{\prime \prime } = -3 \sqrt {t} \]
i.c.

[[_2nd_order, _quadrature]]

12719

\[ {}t x^{\prime \prime }+x^{\prime } = 1 \]
i.c.

[[_2nd_order, _missing_y]]

12772

\[ {}x^{\prime \prime }+x^{\prime } = 3 t \]

[[_2nd_order, _missing_y]]

12789

\[ {}x^{\prime \prime }-2 x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12793

\[ {}x^{\prime \prime }-2 x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12817

\[ {}x^{\prime \prime }-x^{\prime } = 6+{\mathrm e}^{2 t} \]

[[_2nd_order, _missing_y]]

12825

\[ {}x^{\prime \prime }-2 x^{\prime } = 4 \]
i.c.

[[_2nd_order, _missing_x]]

12832

\[ {}t^{2} x^{\prime \prime }+3 x^{\prime } t +x = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12842

\[ {}t^{2} x^{\prime \prime }-2 x = t^{3} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

12925

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

13204

\[ {}\left (2 x +1\right ) \left (x +1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = \left (2 x +1\right )^{2} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13222

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 4 \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13228

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

13229

\[ {}x^{2} y^{\prime \prime }-2 y = 4 x -8 \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13234

\[ {}\left (x +2\right )^{2} y^{\prime \prime }-\left (x +2\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

13430

\[ {}y^{\prime \prime }-4 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13442

\[ {}x^{\prime \prime }-4 x^{\prime } = t^{2} \]

[[_2nd_order, _missing_y]]

13469

\[ {}t^{2} x^{\prime \prime }-2 x = t^{3} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13470

\[ {}x^{\prime \prime }-4 x^{\prime } = \tan \left (t \right ) \]

[[_2nd_order, _missing_y]]

13475

\[ {}t^{2} x^{\prime \prime }+x^{\prime } t -x = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

13477

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-3 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

13480

\[ {}3 x^{2} z^{\prime \prime }+5 x z^{\prime }-z = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

13669

\[ {}y^{\prime \prime }+2 x y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

13670

\[ {}x y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+\cos \left (x \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

13671

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+4 x y = 2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13672

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = -2 x +1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13675

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13677

\[ {}x y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

13678

\[ {}y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+\cos \left (x \right ) y = \cos \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13679

\[ {}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }-\csc \left (x \right )^{2} y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13680

\[ {}x \ln \left (x \right ) y^{\prime \prime }+2 y^{\prime }-\frac {y}{x} = 1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13682

\[ {}\frac {x y^{\prime \prime }}{y+1}+\frac {y^{\prime } y-x {y^{\prime }}^{2}+y^{\prime }}{\left (y+1\right )^{2}} = x \sin \left (x \right ) \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

13683

\[ {}\left (x \cos \left (y\right )+\sin \left (x \right )\right ) y^{\prime \prime }-x {y^{\prime }}^{2} \sin \left (y\right )+2 \left (\cos \left (y\right )+\cos \left (x \right )\right ) y^{\prime } = \sin \left (x \right ) y \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

13684

\[ {}y y^{\prime \prime } \sin \left (x \right )+\left (\sin \left (x \right ) y^{\prime }+\cos \left (x \right ) y\right ) y^{\prime } = \cos \left (x \right ) \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

13685

\[ {}\left (1-y\right ) y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

13686

\[ {}\left (\cos \left (y\right )-y \sin \left (y\right )\right ) y^{\prime \prime }-{y^{\prime }}^{2} \left (2 \sin \left (y\right )+y \cos \left (y\right )\right ) = \sin \left (x \right ) \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

13763

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = t^{7} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13906

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _missing_y]]

13937

\[ {}y^{\prime \prime }-3 y^{\prime } = 2-6 x \]

[[_2nd_order, _missing_y]]

13986

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

13988

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

13990

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

14004

\[ {}x^{2} y^{\prime \prime }+6 x y^{\prime }+4 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

14603

\[ {}y^{\prime \prime }+2 y^{\prime } = 3 t +2 \]
i.c.

[[_2nd_order, _missing_y]]

14604

\[ {}y^{\prime \prime }+4 y^{\prime } = 3 t +2 \]
i.c.

[[_2nd_order, _missing_y]]

14660

\[ {}y^{\prime \prime } = \frac {x +1}{x -1} \]

[[_2nd_order, _quadrature]]

14674

\[ {}y^{\prime \prime } = \sin \left (2 x \right ) \]

[[_2nd_order, _quadrature]]

14675

\[ {}y^{\prime \prime }-3 = x \]

[[_2nd_order, _quadrature]]

14683

\[ {}x y^{\prime \prime }+2 = \sqrt {x} \]
i.c.

[[_2nd_order, _quadrature]]

14885

\[ {}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \]

[[_2nd_order, _missing_y]]

14886

\[ {}x y^{\prime \prime } = 2 y^{\prime } \]

[[_2nd_order, _missing_y]]

14887

\[ {}y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_x]]

14888

\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _missing_y]]

14890

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

14892

\[ {}y^{\prime \prime } y^{\prime } = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

14893

\[ {}y y^{\prime \prime } = -{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

14897

\[ {}y^{\prime \prime } = 2 y^{\prime }-6 \]

[[_2nd_order, _missing_x]]

14899

\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _missing_y]]

14906

\[ {}\sin \left (y\right ) y^{\prime \prime }+\cos \left (y\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

14907

\[ {}y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_x]]

14908

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 2 y^{\prime } y \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

14909

\[ {}y^{2} y^{\prime \prime }+y^{\prime \prime }+2 y {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

14911

\[ {}y^{\prime \prime } y^{\prime } = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

14913

\[ {}x y^{\prime \prime }-y^{\prime } = 6 x^{5} \]

[[_2nd_order, _missing_y]]

14917

\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _missing_y]]

14919

\[ {}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

14920

\[ {}x y^{\prime \prime } = 2 y^{\prime } \]
i.c.

[[_2nd_order, _missing_y]]

14921

\[ {}y^{\prime \prime } = y^{\prime } \]
i.c.

[[_2nd_order, _missing_x]]

14922

\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _missing_y]]

14925

\[ {}x y^{\prime \prime }+2 y^{\prime } = 6 \]
i.c.

[[_2nd_order, _missing_y]]

14929

\[ {}y^{\prime \prime } = -y^{\prime } {\mathrm e}^{-y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

14934

\[ {}y^{\prime \prime } = 2 y^{\prime } y \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

14936

\[ {}y^{\prime \prime } = 2 y^{\prime } y \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

14937

\[ {}y^{\prime \prime } = 2 y^{\prime } y \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

14988

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14994

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

15056

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

15067

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

15111

\[ {}y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{\frac {x}{2}} \]

[[_2nd_order, _missing_y]]

15115

\[ {}y^{\prime \prime }+3 y^{\prime } = 26 \cos \left (\frac {x}{3}\right )-12 \sin \left (\frac {x}{3}\right ) \]

[[_2nd_order, _missing_y]]

15126

\[ {}y^{\prime \prime } = 6 x \,{\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _quadrature]]

15131

\[ {}y^{\prime \prime }+4 y^{\prime } = 20 \]

[[_2nd_order, _missing_x]]

15132

\[ {}y^{\prime \prime }+4 y^{\prime } = x^{2} \]

[[_2nd_order, _missing_y]]

15183

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 85 \cos \left (2 \ln \left (x \right )\right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15184

\[ {}x^{2} y^{\prime \prime }-2 y = 15 \cos \left (3 \ln \left (x \right )\right )-10 \sin \left (3 \ln \left (x \right )\right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15186

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = \frac {10}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15195

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = \sqrt {x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15199

\[ {}x^{2} y^{\prime \prime }-2 y = \frac {1}{-2+x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15201

\[ {}x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15203

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y = \frac {10}{x} \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15217

\[ {}2 x y^{\prime \prime }+y^{\prime } = \sqrt {x} \]

[[_2nd_order, _missing_y]]

15237

\[ {}2 y^{\prime \prime }-7 y^{\prime }+3 = 0 \]

[[_2nd_order, _missing_x]]

15239

\[ {}x y^{\prime \prime } = 3 y^{\prime } \]

[[_2nd_order, _missing_y]]

15240

\[ {}y^{\prime \prime }-5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

15254

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = \frac {1}{x^{2}+1} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15259

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (x +1\right )^{2}} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15260

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15470

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

15499

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15677

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{t}+\frac {y}{t^{2}} = \frac {1}{t} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15865

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

15882

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

15884

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

15897

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15898

\[ {}3 y^{\prime \prime }-y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15932

\[ {}y^{\prime \prime }+2 y^{\prime } = 3-4 t \]

[[_2nd_order, _missing_y]]

15937

\[ {}y^{\prime \prime } = 3 t^{4}-2 t \]

[[_2nd_order, _quadrature]]

15947

\[ {}y^{\prime \prime }-2 y^{\prime } = 52 \sin \left (3 t \right ) \]

[[_2nd_order, _missing_y]]

15955

\[ {}y^{\prime \prime }+4 y^{\prime } = 8 \,{\mathrm e}^{4 t}-4 \,{\mathrm e}^{-4 t} \]

[[_2nd_order, _missing_y]]

15956

\[ {}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t} \]

[[_2nd_order, _missing_y]]

15957

\[ {}y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \]

[[_2nd_order, _missing_y]]

15958

\[ {}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t} \]

[[_2nd_order, _missing_y]]

15959

\[ {}y^{\prime \prime } = t^{2}+{\mathrm e}^{t}+\sin \left (t \right ) \]

[[_2nd_order, _quadrature]]

15960

\[ {}y^{\prime \prime }+3 y^{\prime } = 18 \]
i.c.

[[_2nd_order, _missing_x]]

15968

\[ {}y^{\prime \prime }-3 y^{\prime } = -{\mathrm e}^{3 t}-2 t \]
i.c.

[[_2nd_order, _missing_y]]

15969

\[ {}y^{\prime \prime }-y^{\prime } = -3 t -4 t^{2} {\mathrm e}^{2 t} \]
i.c.

[[_2nd_order, _missing_y]]

15970

\[ {}y^{\prime \prime }-2 y^{\prime } = 2 t^{2} \]
i.c.

[[_2nd_order, _missing_y]]

15971

\[ {}y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \]
i.c.

[[_2nd_order, _missing_y]]

15972

\[ {}y^{\prime \prime }-3 y^{\prime } = {\mathrm e}^{-3 t}-{\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _missing_y]]

15985

\[ {}y^{\prime \prime }+16 y^{\prime } = t \]

[[_2nd_order, _missing_y]]

16030

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = \ln \left (t \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16032

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y = 2 \ln \left (t \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16154

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = \frac {1}{x^{2}} \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16155

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = \ln \left (x \right ) \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16159

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

16172

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

16252

\[ {}y^{\prime \prime }+5 y^{\prime } = 5 t^{2} \]

[[_2nd_order, _missing_y]]

16253

\[ {}y^{\prime \prime }-4 y^{\prime } = -3 \sin \left (t \right ) \]

[[_2nd_order, _missing_y]]

16256

\[ {}y^{\prime \prime }-2 y^{\prime } = \frac {1}{1+{\mathrm e}^{2 t}} \]

[[_2nd_order, _missing_y]]

16286

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

16298

\[ {}t \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right )+y^{\prime } y = 1 \]
i.c.

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

16585

\[ {}\left (x -1\right ) y^{\prime \prime } = 1 \]

[[_2nd_order, _quadrature]]

16590

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

16594

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]
i.c.

[[_2nd_order, _quadrature]]

16595

\[ {}y^{\prime \prime } = 2 x \ln \left (x \right ) \]

[[_2nd_order, _quadrature]]

16596

\[ {}x y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

16597

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

16599

\[ {}x y^{\prime \prime } = y^{\prime }+x^{2} \]

[[_2nd_order, _missing_y]]

16611

\[ {}y^{\prime \prime }+y^{\prime }+2 = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16619

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

16650

\[ {}y^{\prime \prime }+3 y^{\prime } = 3 \]

[[_2nd_order, _missing_x]]

16651

\[ {}y^{\prime \prime }-7 y^{\prime } = \left (x -1\right )^{2} \]

[[_2nd_order, _missing_y]]

16652

\[ {}y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

16653

\[ {}y^{\prime \prime }+7 y^{\prime } = {\mathrm e}^{-7 x} \]

[[_2nd_order, _missing_y]]

16656

\[ {}4 y^{\prime \prime }-3 y^{\prime } = x \,{\mathrm e}^{\frac {3 x}{4}} \]

[[_2nd_order, _missing_y]]

16657

\[ {}y^{\prime \prime }-4 y^{\prime } = x \,{\mathrm e}^{4 x} \]

[[_2nd_order, _missing_y]]

16687

\[ {}y^{\prime \prime }+2 y^{\prime } = -2 \]

[[_2nd_order, _missing_x]]

16695

\[ {}y^{\prime \prime }+8 y^{\prime } = 8 x \]

[[_2nd_order, _missing_y]]

16699

\[ {}7 y^{\prime \prime }-y^{\prime } = 14 x \]

[[_2nd_order, _missing_y]]

16700

\[ {}y^{\prime \prime }+3 y^{\prime } = 3 x \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _missing_y]]

16709

\[ {}y^{\prime \prime }-y^{\prime } = {\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

16710

\[ {}y^{\prime \prime }+2 y^{\prime } = 4 \,{\mathrm e}^{x} \left (\sin \left (x \right )+\cos \left (x \right )\right ) \]

[[_2nd_order, _missing_y]]

16712

\[ {}4 y^{\prime \prime }+8 y^{\prime } = x \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

16727

\[ {}y^{\prime \prime }+4 y^{\prime } = x +{\mathrm e}^{-4 x} \]

[[_2nd_order, _missing_y]]

16733

\[ {}y^{\prime \prime }-4 y^{\prime } = 2 \cos \left (4 x \right )^{2} \]

[[_2nd_order, _missing_y]]

16735

\[ {}y^{\prime \prime }-3 y^{\prime } = 18 x -10 \cos \left (x \right ) \]

[[_2nd_order, _missing_y]]

16742

\[ {}y^{\prime \prime }+y^{\prime } = \cos \left (x \right )^{2}+{\mathrm e}^{x}+x^{2} \]

[[_2nd_order, _missing_y]]

16745

\[ {}y^{\prime \prime }+y^{\prime } = x^{2}-{\mathrm e}^{-x}+{\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

16752

\[ {}y^{\prime \prime }-3 y^{\prime } = 1+{\mathrm e}^{x}+\cos \left (x \right )+\sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

16758

\[ {}y^{\prime \prime }+2 y^{\prime }+1 = 3 \sin \left (2 x \right )+\cos \left (x \right ) \]

[[_2nd_order, _missing_y]]

16770

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{-x} \]
i.c.

[[_2nd_order, _missing_y]]

16777

\[ {}y^{\prime \prime }-y^{\prime } = -5 \,{\mathrm e}^{-x} \left (\sin \left (x \right )+\cos \left (x \right )\right ) \]
i.c.

[[_2nd_order, _missing_y]]

16793

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

16794

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

16796

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

16804

\[ {}x^{2} y^{\prime \prime }-2 y = \sin \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16805

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-3 y = -\frac {16 \ln \left (x \right )}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16807

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{m} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16808

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 2 \ln \left (x \right )^{2}+12 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16825

\[ {}y^{\prime \prime }+y^{\prime } = \frac {1}{1+{\mathrm e}^{x}} \]

[[_2nd_order, _missing_y]]

16831

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x} \cos \left ({\mathrm e}^{x}\right ) \]

[[_2nd_order, _missing_y]]

16840

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime } = \frac {1}{x^{2}+1} \]
i.c.

[[_2nd_order, _missing_y]]

16854

\[ {}x^{\prime \prime }+\left (x+2\right ) x^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

16860

\[ {}y y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

16864

\[ {}y^{\prime \prime }+\alpha y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16871

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

17241

\[ {}t^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

17242

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

17271

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

17293

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17304

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

17306

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }-6 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

17307

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

17311

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }-3 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

17321

\[ {}y^{\prime \prime }+2 y^{\prime } = 3+4 \sin \left (2 t \right ) \]

[[_2nd_order, _missing_y]]

17339

\[ {}y^{\prime \prime }+3 y^{\prime } = 2 t^{4}+t^{2} {\mathrm e}^{-3 t}+\sin \left (3 t \right ) \]

[[_2nd_order, _missing_y]]

17349

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+5 y = x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

17381

\[ {}t^{2} y^{\prime \prime }-2 y = 3 t^{2}-1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

17384

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }+5 y = t \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

17569

\[ {}y^{\prime \prime } = \sin \left (x \right ) \]

[[_2nd_order, _quadrature]]

17654

\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2}-y^{\prime } y = 0 \]

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

17660

\[ {}x \left (x y+1\right ) y^{\prime \prime }+x^{2} {y^{\prime }}^{2}+\left (4 x y+2\right ) y^{\prime }+y^{2}+1 = 0 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

17705

\[ {}x^{2} y^{\prime \prime }-2 y = x^{2}+\frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

17863

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

17869

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

17872

\[ {}y^{\prime \prime } = y^{\prime } {\mathrm e}^{y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

17881

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } y = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

17925

\[ {}x y^{\prime \prime }-y^{\prime } = 3 x^{2} \]

[[_2nd_order, _missing_y]]

17926

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

17929

\[ {}y^{\prime \prime }-2 y^{\prime } = 6 \]

[[_2nd_order, _missing_x]]

17931

\[ {}y^{\prime \prime } = {\mathrm e}^{x} \]

[[_2nd_order, _quadrature]]

17932

\[ {}y^{\prime \prime }-2 y^{\prime } = 4 \]

[[_2nd_order, _missing_x]]

17935

\[ {}y^{\prime \prime }+2 y^{\prime } = 6 \,{\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

17936

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }-5 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

17942

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

17945

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17972

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

18006

\[ {}y^{\prime \prime }-2 y^{\prime } = 12 x -10 \]

[[_2nd_order, _missing_y]]

18009

\[ {}y^{\prime \prime }+y^{\prime } = 10 x^{4}+2 \]

[[_2nd_order, _missing_y]]

18090

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

18196

\[ {}x^{\prime \prime }+3 x^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

18271

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18285

\[ {}y^{\prime \prime }-2 y^{\prime } y = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

18354

\[ {}e y^{\prime \prime } = \frac {P \left (\frac {L}{2}-x \right )}{2} \]

[[_2nd_order, _quadrature]]

18355

\[ {}e y^{\prime \prime } = \frac {w \left (\frac {L^{2}}{4}-x^{2}\right )}{2} \]

[[_2nd_order, _quadrature]]

18356

\[ {}e y^{\prime \prime } = -\frac {\left (w L +P \right ) x}{2}-\frac {w \,x^{2}}{2} \]

[[_2nd_order, _quadrature]]

18357

\[ {}e y^{\prime \prime } = -P \left (L -x \right ) \]

[[_2nd_order, _quadrature]]

18358

\[ {}e y^{\prime \prime } = -P L +\left (w L +P \right ) x -\frac {w \left (L^{2}+x^{2}\right )}{2} \]

[[_2nd_order, _quadrature]]

18365

\[ {}x y^{\prime \prime }+2 y^{\prime } = 2 x \]

[[_2nd_order, _missing_y]]

18367

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18368

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18369

\[ {}y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+\csc \left (x \right )^{2} y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18370

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (3 x -2\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

18371

\[ {}\left (3 x^{2}+x \right ) y^{\prime \prime }+2 \left (1+6 x \right ) y^{\prime }+6 y = \sin \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18374

\[ {}y^{\prime \prime } = \cos \left (x \right ) \]

[[_2nd_order, _quadrature]]

18381

\[ {}x y^{\prime \prime }+3 y^{\prime } = 3 x \]

[[_2nd_order, _missing_y]]

18382

\[ {}x = y^{\prime \prime }+y^{\prime } \]

[[_2nd_order, _missing_y]]

18400

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]