6.125 Problems 12401 to 12500

Table 6.249: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

12401

\[ {} y y^{\prime } = \left (a \,{\mathrm e}^{x}+b \right ) y+c \,{\mathrm e}^{2 x}-a b \,{\mathrm e}^{x}-b^{2} \]

12402

\[ {} y y^{\prime } = \left (a \left (2 \mu +\lambda \right ) {\mathrm e}^{\lambda x}+b \right ) {\mathrm e}^{x \mu } y+\left (-a^{2} \mu \,{\mathrm e}^{2 \lambda x}-a b \,{\mathrm e}^{\lambda x}+c \right ) {\mathrm e}^{2 x \mu } \]

12403

\[ {} y y^{\prime } = \left ({\mathrm e}^{\lambda x} a +b \right ) y+c \left (a^{2} {\mathrm e}^{2 \lambda x}+a b \left (\lambda x +1\right ) {\mathrm e}^{\lambda x}+b^{2} \lambda x \right ) \]

12404

\[ {} y y^{\prime } = {\mathrm e}^{\lambda x} \left (2 a \lambda x +a +b \right ) y-{\mathrm e}^{2 \lambda x} \left (a^{2} \lambda \,x^{2}+a b x +c \right ) \]

12405

\[ {} y y^{\prime } = {\mathrm e}^{a x} \left (2 a \,x^{2}+b +2 x \right ) y+{\mathrm e}^{2 a x} \left (-a \,x^{4}-b \,x^{2}+c \right ) \]

12406

\[ {} y y^{\prime }+a \left (2 b x +1\right ) {\mathrm e}^{b x} y = -a^{2} b \,x^{2} {\mathrm e}^{2 b x} \]

12407

\[ {} y y^{\prime }-a \left (1+2 n +2 n \left (n +1\right ) x \right ) {\mathrm e}^{\left (n +1\right ) x} y = -a^{2} n \left (n +1\right ) \left (n x +1\right ) x \,{\mathrm e}^{2 \left (n +1\right ) x} \]

12408

\[ {} y y^{\prime }+a \left (1+2 b \sqrt {x}\right ) {\mathrm e}^{2 b \sqrt {x}} y = -a^{2} b \,x^{{3}/{2}} {\mathrm e}^{4 b \sqrt {x}} \]

12409

\[ {} y y^{\prime } = \left (a \cosh \left (x \right )+b \right ) y-a b \sinh \left (x \right )+c \]

12410

\[ {} y y^{\prime } = \left (a \sinh \left (x \right )+b \right ) y-a b \cosh \left (x \right )+c \]

12411

\[ {} y y^{\prime } = \left (2 \ln \left (x \right )+a +1\right ) y+x \left (-\ln \left (x \right )^{2}-a \ln \left (x \right )+b \right ) \]

12412

\[ {} y y^{\prime } = \left (2 \ln \left (x \right )^{2}+2 \ln \left (x \right )+a \right ) y+x \left (-\ln \left (x \right )^{4}-a \ln \left (x \right )^{2}+b \right ) \]

12413

\[ {} y y^{\prime } = a x \cos \left (\lambda \,x^{2}\right ) y+x \]

12414

\[ {} y y^{\prime } = a x \sin \left (\lambda \,x^{2}\right ) y+x \]

12415

\[ {} \left (y A +B x +a \right ) y^{\prime }+B y+k x +b = 0 \]

12416

\[ {} \left (y+a x +b \right ) y^{\prime } = \alpha y+\beta x +\gamma \]

12417

\[ {} \left (y+a k \,x^{2}+b x +c \right ) y^{\prime } = -y^{2} a +2 a k x y+m y+k \left (k +b -m \right ) x +s \]

12418

\[ {} \left (y+A \,x^{n}+a \right ) y^{\prime }+n A \,x^{n -1} y+k \,x^{m}+b = 0 \]

12419

\[ {} \left (y+a \,x^{n +1}+b \,x^{n}\right ) y^{\prime } = \left (a n \,x^{n}+c \,x^{n -1}\right ) y \]

12420

\[ {} x y y^{\prime } = y^{2} a +b y+c \,x^{n}+s \]

12421

\[ {} x y y^{\prime } = -n y^{2}+a \left (2 n +1\right ) x y+b y-a^{2} n \,x^{2}-a b x +c \]

12422

\[ {} y^{\prime \prime }+a y = 0 \]

12423

\[ {} y^{\prime \prime }-\left (a x +b \right ) y = 0 \]

12424

\[ {} y^{\prime \prime }-\left (a^{2} x^{2}+a \right ) y = 0 \]

12425

\[ {} y^{\prime \prime }-\left (a \,x^{2}+b \right ) y = 0 \]

12426

\[ {} y^{\prime \prime }+a^{3} x \left (-a x +2\right ) y = 0 \]

12427

\[ {} y^{\prime \prime }-\left (a \,x^{2}+b c x \right ) y = 0 \]

12428

\[ {} y^{\prime \prime }-a \,x^{n} y = 0 \]

12429

\[ {} y^{\prime \prime }-a \left (a \,x^{2 n}+n \,x^{n -1}\right ) y = 0 \]

12430

\[ {} y^{\prime \prime }-a \,x^{n -2} \left (a \,x^{n}+n +1\right ) y = 0 \]

12431

\[ {} y^{\prime \prime }+\left (a \,x^{2 n}+b \,x^{n -1}\right ) y = 0 \]

12432

\[ {} y^{\prime \prime }+a y^{\prime }+b y = 0 \]

12433

\[ {} y^{\prime \prime }+a y^{\prime }+\left (b x +c \right ) y = 0 \]

12434

\[ {} y^{\prime \prime }+a y^{\prime }-\left (b \,x^{2}+c \right ) y = 0 \]

12435

\[ {} y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2}+a x +1\right ) y = 0 \]

12436

\[ {} y^{\prime \prime }+a y^{\prime }+b x \left (-b \,x^{3}+a x +2\right ) y = 0 \]

12437

\[ {} y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2 n}+a \,x^{n}+n \,x^{n -1}\right ) y = 0 \]

12438

\[ {} y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2 n}-a \,x^{n}+n \,x^{n -1}\right ) y = 0 \]

12439

\[ {} y^{\prime \prime }+x y^{\prime }+\left (n -1\right ) y = 0 \]

12440

\[ {} y^{\prime \prime }-2 x y^{\prime }+2 n y = 0 \]

12441

\[ {} y^{\prime \prime }+a x y^{\prime }+b y = 0 \]

12442

\[ {} y^{\prime \prime }+a x y^{\prime }+b x y = 0 \]

12443

\[ {} y^{\prime \prime }+a x y^{\prime }+\left (b x +c \right ) y = 0 \]

12444

\[ {} y^{\prime \prime }+2 a x y^{\prime }+\left (b \,x^{4}+a^{2} x^{2}+c x +a \right ) y = 0 \]

12445

\[ {} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }-a y = 0 \]

12446

\[ {} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+a y = 0 \]

12447

\[ {} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (a x +b -c \right ) y = 0 \]

12448

\[ {} y^{\prime \prime }+\left (a x +2 b \right ) y^{\prime }+\left (a b x +b^{2}-a \right ) y = 0 \]

12449

\[ {} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y = 0 \]

12450

\[ {} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (\left (-c +a \right ) x^{2}+b x +1\right ) y = 0 \]

12451

\[ {} y^{\prime \prime }+2 \left (a x +b \right ) y^{\prime }+\left (a^{2} x^{2}+2 a b x +c \right ) y = 0 \]

12452

\[ {} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (\alpha \,x^{2}+\beta x +\gamma \right ) y = 0 \]

12453

\[ {} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (-c \,x^{2 n}+a \,x^{n +1}+b \,x^{n}+n \,x^{n -1}\right ) y = 0 \]

12454

\[ {} y^{\prime \prime }+a \left (-b^{2}+x^{2}\right ) y^{\prime }-a \left (x +b \right ) y = 0 \]

12455

\[ {} y^{\prime \prime }+\left (a \,x^{2}+b \right ) y^{\prime }+c \left (a \,x^{2}+b -c \right ) y = 0 \]

12456

\[ {} y^{\prime \prime }+\left (a \,x^{2}+2 b \right ) y^{\prime }+\left (a b \,x^{2}-a x +b^{2}\right ) y = 0 \]

12457

\[ {} y^{\prime \prime }+\left (2 x^{2}+a \right ) y^{\prime }+\left (x^{4}+a \,x^{2}+b +2 x \right ) y = 0 \]

12458

\[ {} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }+\left (\alpha \,x^{2}+\beta x +\gamma \right ) y = 0 \]

12459

\[ {} y^{\prime \prime }+\left (a b \,x^{2}+b x +2 a \right ) y^{\prime }+a^{2} \left (b \,x^{2}+1\right ) y = 0 \]

12460

\[ {} y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y^{\prime }+x \left (a b \,x^{2}+b c +2 a \right ) y = 0 \]

12461

\[ {} y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (a b \,x^{3}+a c \,x^{2}+b \right ) y = 0 \]

12462

\[ {} y^{\prime \prime }+\left (a \,x^{3}+2 b \right ) y^{\prime }+\left (a b \,x^{3}-a \,x^{2}+b^{2}\right ) y = 0 \]

12463

\[ {} y^{\prime \prime }+\left (a \,x^{3}+b x \right ) y^{\prime }+2 \left (2 a \,x^{2}+b \right ) y = 0 \]

12464

\[ {} y^{\prime \prime }+\left (a b \,x^{3}+b \,x^{2}+2 a \right ) y^{\prime }+a^{2} \left (b \,x^{3}+1\right ) y = 0 \]

12465

\[ {} y^{\prime \prime }+a \,x^{n} y^{\prime } = 0 \]

12466

\[ {} y^{\prime \prime }+a \,x^{n} y^{\prime }+b \,x^{n -1} y = 0 \]

12467

\[ {} y^{\prime \prime }+2 a \,x^{n} y^{\prime }+a \left (a \,x^{2 n}+n \,x^{n -1}\right ) y = 0 \]

12468

\[ {} y^{\prime \prime }+a \,x^{n} y^{\prime }+\left (b \,x^{2 n}+c \,x^{n -1}\right ) y = 0 \]

12469

\[ {} y^{\prime \prime }+a \,x^{n} y^{\prime }-b \left (a \,x^{n +m}+b \,x^{2 m}+m \,x^{m -1}\right ) y = 0 \]

12470

\[ {} y^{\prime \prime }+2 a \,x^{n} y^{\prime }+\left (a^{2} x^{2 n}+b \,x^{2 m}+a n \,x^{n -1}+c \,x^{m -1}\right ) y = 0 \]

12471

\[ {} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+c \left (a \,x^{n}+b -c \right ) y = 0 \]

12472

\[ {} y^{\prime \prime }+\left (a \,x^{n}+2 b \right ) y^{\prime }+\left (a b \,x^{n}-a \,x^{n -1}+b^{2}\right ) y = 0 \]

12473

\[ {} y^{\prime \prime }+\left (a b \,x^{n}+b \,x^{n -1}+2 a \right ) y^{\prime }+a^{2} \left (b \,x^{n}+1\right ) y = 0 \]

12474

\[ {} y^{\prime \prime }+\left (a b \,x^{n}+2 b \,x^{n -1}-a^{2} x \right ) y^{\prime }+a \left (a b \,x^{n}+b \,x^{n -1}-a^{2} x \right ) y = 0 \]

12475

\[ {} y^{\prime \prime }+x^{n} \left (a \,x^{2}+\left (a c +b \right ) x +b c \right ) y^{\prime }-x^{n} \left (a x +b \right ) y = 0 \]

12476

\[ {} y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }-\left (a \,x^{n -1}+b \,x^{m -1}\right ) y = 0 \]

12477

\[ {} y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (a n \,x^{n -1}+b m \,x^{m -1}\right ) y = 0 \]

12478

\[ {} y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (a \left (n +1\right ) x^{n -1}+b \left (m +1\right ) x^{m -1}\right ) y = 0 \]

12479

\[ {} y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+c \left (a \,x^{n}+b \,x^{m}-c \right ) y = 0 \]

12480

\[ {} y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (a b \,x^{n +m}+b \left (m +1\right ) x^{m -1}-a \,x^{n -1}\right ) y = 0 \]

12481

\[ {} y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }+\left (a b \,x^{n +m}+b c \,x^{m}+a n \,x^{n -1}\right ) y = 0 \]

12482

\[ {} x y^{\prime \prime }+\frac {y^{\prime }}{2}+a y = 0 \]

12483

\[ {} x y^{\prime \prime }+a y^{\prime }+b y = 0 \]

12484

\[ {} x y^{\prime \prime }+a y^{\prime }+b x y = 0 \]

12485

\[ {} x y^{\prime \prime }+a y^{\prime }+\left (b x +c \right ) y = 0 \]

12486

\[ {} x y^{\prime \prime }+n y^{\prime }+b \,x^{-2 n +1} y = 0 \]

12487

\[ {} x y^{\prime \prime }+\left (1-3 n \right ) y^{\prime }-a^{2} n^{2} x^{2 n -1} y = 0 \]

12488

\[ {} x y^{\prime \prime }+a y^{\prime }+b \,x^{n} y = 0 \]

12489

\[ {} x y^{\prime \prime }+a y^{\prime }+b \,x^{n} \left (-b \,x^{n +1}+a +n \right ) y = 0 \]

12490

\[ {} x y^{\prime \prime }+a x y^{\prime }+a y = 0 \]

12491

\[ {} x y^{\prime \prime }+\left (b -x \right ) y^{\prime }-a y = 0 \]

12492

\[ {} x y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (\left (-c +a \right ) x +b \right ) y = 0 \]

12493

\[ {} x y^{\prime \prime }+\left (2 a x +b \right ) y^{\prime }+a \left (a x +b \right ) y = 0 \]

12494

\[ {} x y^{\prime \prime }+\left (\left (a +b \right ) x +n +m \right ) y^{\prime }+\left (a b x +a n +b m \right ) y = 0 \]

12495

\[ {} x y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y = 0 \]

12496

\[ {} x y^{\prime \prime }-\left (a x +1\right ) y^{\prime }-b \,x^{2} \left (b x +a \right ) y = 0 \]

12497

\[ {} x y^{\prime \prime }-\left (2 a x +1\right ) y^{\prime }+\left (b \,x^{3}+a^{2} x +a \right ) y = 0 \]

12498

\[ {} x y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c x \left (-c \,x^{2}+a x +b +1\right ) = 0 \]

12499

\[ {} x y^{\prime \prime }-\left (2 a x +1\right ) y^{\prime }+b \,x^{3} y = 0 \]

12500

\[ {} x y^{\prime \prime }+\left (a b \,x^{2}+b -5\right ) y^{\prime }+2 a^{2} \left (b -2\right ) x^{3} y = 0 \]