6.159 Problems 15801 to 15900

Table 6.317: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

15801

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+5 y = 0 \]

15802

\[ {}y^{\prime } = -\frac {x}{y} \]

15803

\[ {}3 y \left (t^{2}+y\right )+t \left (t^{2}+6 y\right ) y^{\prime } = 0 \]

15804

\[ {}y^{\prime } = -\frac {2 y}{x}-3 \]

15805

\[ {}y \cos \left (t \right )+\left (2 y+\sin \left (t \right )\right ) y^{\prime } = 0 \]

15806

\[ {}\frac {y}{x}+\cos \left (y\right )+\left (\ln \left (x \right )-x \sin \left (y\right )\right ) y^{\prime } = 0 \]

15807

\[ {}y^{\prime } = \left (x^{2}-1\right ) \left (x^{3}-3 x \right )^{3} \]

15808

\[ {}y^{\prime } = \sin \left (x^{2}\right ) x \]

15809

\[ {}y^{\prime } = \frac {x}{\sqrt {x^{2}-16}} \]

15810

\[ {}y^{\prime } = \frac {1}{x \ln \left (x \right )} \]

15811

\[ {}y^{\prime } = x \ln \left (x \right ) \]

15812

\[ {}y^{\prime } = x \,{\mathrm e}^{-x} \]

15813

\[ {}y^{\prime } = \frac {-2 x -10}{\left (x +2\right ) \left (x -4\right )} \]

15814

\[ {}y^{\prime } = \frac {-x^{2}+x}{\left (1+x \right ) \left (x^{2}+1\right )} \]

15815

\[ {}y^{\prime } = \frac {\sqrt {x^{2}-16}}{x} \]

15816

\[ {}y^{\prime } = \left (-x^{2}+4\right )^{{3}/{2}} \]

15817

\[ {}y^{\prime } = \frac {1}{x^{2}-16} \]

15818

\[ {}y^{\prime } = \cos \left (x \right ) \cot \left (x \right ) \]

15819

\[ {}y^{\prime } = \sin \left (x \right )^{3} \tan \left (x \right ) \]

15820

\[ {}y^{\prime }+2 y = 0 \]

15821

\[ {}y^{\prime }+y = \sin \left (t \right ) \]

15822

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

15823

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

15824

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]

15825

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = 0 \]

15826

\[ {}t^{2} y^{\prime \prime }-12 t y^{\prime }+42 y = 0 \]

15827

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+5 y = 0 \]

15828

\[ {}y^{\prime } = 4 x^{3}-x +2 \]

15829

\[ {}y^{\prime } = \sin \left (2 t \right )-\cos \left (2 t \right ) \]

15830

\[ {}y^{\prime } = \frac {\cos \left (\frac {1}{x}\right )}{x^{2}} \]

15831

\[ {}y^{\prime } = \frac {\ln \left (x \right )}{x} \]

15832

\[ {}y^{\prime } = \frac {\left (x -4\right ) y^{3}}{x^{3} \left (y-2\right )} \]

15833

\[ {}y^{\prime } = \frac {2 x y+y^{2}}{x^{2}} \]

15834

\[ {}x y^{\prime }+y = \cos \left (x \right ) \]

15835

\[ {}16 y^{\prime \prime }+24 y^{\prime }+153 y = 0 \]

15836

\[ {}[x^{\prime }\left (t \right ) = 4 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right )] \]

15837

\[ {}4 x \left (x^{2}+y^{2}\right )-5 y+4 y \left (x^{2}+y^{2}-5 x \right ) y^{\prime } = 0 \]

15838

\[ {}y^{\prime } = \sin \left (x \right )^{4} \]

15839

\[ {}y^{\prime \prime \prime \prime }+\frac {25 y^{\prime \prime }}{2}-5 y^{\prime }+\frac {629 y}{16} = 0 \]

15840

\[ {}[x^{\prime }\left (t \right ) = 4 y \left (t \right ), y^{\prime }\left (t \right ) = -4 x \left (t \right )] \]

15841

\[ {}[x^{\prime }\left (t \right ) = -5 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+2 y \left (t \right )] \]

15842

\[ {}y^{\prime }+y \cos \left (x \right ) = 0 \]

15843

\[ {}y^{\prime }-y = \sin \left (x \right ) \]

15844

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

15845

\[ {}y^{\prime \prime }-6 y^{\prime }+45 y = 0 \]

15846

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-16 y = 0 \]

15847

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+2 y = 0 \]

15848

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = x \]

15849

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 2 \]

15850

\[ {}2 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0 \]

15851

\[ {}y \cos \left (x y\right )+\sin \left (x \right )+x \cos \left (x y\right ) y^{\prime } = 0 \]

15852

\[ {}y^{\prime } = x \,{\mathrm e}^{-x^{2}} \]

15853

\[ {}y^{\prime } = x^{2} \sin \left (x \right ) \]

15854

\[ {}y^{\prime } = \frac {2 x^{2}-x +1}{\left (x -1\right ) \left (x^{2}+1\right )} \]

15855

\[ {}y^{\prime } = \frac {x^{2}}{\sqrt {x^{2}-1}} \]

15856

\[ {}y^{\prime }+2 y = x^{2} \]

15857

\[ {}y^{\prime \prime }+4 y = t \]

15858

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \]

15859

\[ {}y^{\prime } = \sin \left (x \right ) \cos \left (x \right )^{2} \]

15860

\[ {}y^{\prime } = \frac {4 x -9}{3 \left (x -3\right )^{{2}/{3}}} \]

15861

\[ {}y^{\prime }+t^{2} = y^{2} \]

15862

\[ {}y^{\prime }+t^{2} = \frac {1}{y^{2}} \]

15863

\[ {}y^{\prime } = y+\frac {1}{1-t} \]

15864

\[ {}y^{\prime } = y^{{1}/{5}} \]

15865

\[ {}\frac {y^{\prime }}{t} = \sqrt {y} \]

15866

\[ {}y^{\prime } = 4 t^{2}-t y^{2} \]

15867

\[ {}y^{\prime } = y \sqrt {t} \]

15868

\[ {}y^{\prime } = 6 y^{{2}/{3}} \]

15869

\[ {}t y^{\prime } = y \]

15870

\[ {}y^{\prime } = y \tan \left (t \right ) \]

15871

\[ {}y^{\prime } = \frac {1}{t^{2}+1} \]

15872

\[ {}y^{\prime } = \sqrt {y^{2}-1} \]

15873

\[ {}y^{\prime } = \sqrt {y^{2}-1} \]

15874

\[ {}y^{\prime } = \sqrt {y^{2}-1} \]

15875

\[ {}y^{\prime } = \sqrt {y^{2}-1} \]

15876

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]

15877

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]

15878

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]

15879

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]

15880

\[ {}t y^{\prime }+y = t^{3} \]

15881

\[ {}t^{3} y^{\prime }+t^{4} y = 2 t^{3} \]

15882

\[ {}2 y^{\prime }+t y = \ln \left (t \right ) \]

15883

\[ {}y^{\prime }+y \sec \left (t \right ) = t \]

15884

\[ {}y^{\prime }+\frac {y}{t -3} = \frac {1}{t -1} \]

15885

\[ {}\left (t -2\right ) y^{\prime }+\left (t^{2}-4\right ) y = \frac {1}{2+t} \]

15886

\[ {}y^{\prime }+\frac {y}{\sqrt {-t^{2}+4}} = t \]

15887

\[ {}y^{\prime }+\frac {y}{\sqrt {-t^{2}+4}} = t \]

15888

\[ {}t y^{\prime }+y = t \sin \left (t \right ) \]

15889

\[ {}y^{\prime }+y \tan \left (t \right ) = \sin \left (t \right ) \]

15890

\[ {}y^{\prime } = y^{2} \]

15891

\[ {}y^{\prime } = t y^{2} \]

15892

\[ {}y^{\prime } = -\frac {t}{y} \]

15893

\[ {}y^{\prime } = -y^{3} \]

15894

\[ {}y^{\prime } = \frac {x}{y^{2}} \]

15895

\[ {}\frac {1}{2 \sqrt {t}}+y^{2} y^{\prime } = 0 \]

15896

\[ {}y^{\prime } = \frac {\sqrt {y}}{x^{2}} \]

15897

\[ {}y^{\prime } = \frac {1+y^{2}}{y} \]

15898

\[ {}6+4 t^{3}+\left (5+\frac {9}{y^{8}}\right ) y^{\prime } = 0 \]

15899

\[ {}\frac {6}{t^{9}}-\frac {6}{t^{3}}+t^{7}+\left (9+\frac {1}{s^{2}}-4 s^{8}\right ) s^{\prime } = 0 \]

15900

\[ {}4 \sinh \left (4 y\right ) y^{\prime } = 6 \cosh \left (3 x \right ) \]