6.155 Problems 15401 to 15500

Table 6.309: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

15401

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} \cos \left (2 x \right ) \]

15402

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} {\mathrm e}^{3 x} \sin \left (2 x \right ) \]

15403

\[ {} y^{\prime \prime }-4 y^{\prime }+20 y = {\mathrm e}^{4 x} \sin \left (2 x \right ) \]

15404

\[ {} y^{\prime \prime }-4 y^{\prime }+20 y = {\mathrm e}^{2 x} \sin \left (4 x \right ) \]

15405

\[ {} y^{\prime \prime }-4 y^{\prime }+20 y = x^{3} \sin \left (4 x \right ) \]

15406

\[ {} y^{\prime \prime }-10 y^{\prime }+25 y = 3 x^{2} {\mathrm e}^{5 x} \]

15407

\[ {} y^{\prime \prime }-10 y^{\prime }+25 y = 3 x^{4} \]

15408

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 12 \,{\mathrm e}^{-2 x} \]

15409

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 10 \sin \left (2 x \right ) \]

15410

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 32 \,{\mathrm e}^{4 x} \]

15411

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 32 x \]

15412

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = x^{2} \]

15413

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 30 \cos \left (2 x \right ) \]

15414

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 6 \,{\mathrm e}^{x} \]

15415

\[ {} y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = x^{2} {\mathrm e}^{3 x} \]

15416

\[ {} y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = x^{2} \sin \left (3 x \right ) \]

15417

\[ {} y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = x^{2} {\mathrm e}^{3 x} \sin \left (3 x \right ) \]

15418

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 30 x \cos \left (2 x \right ) \]

15419

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 3 x \cos \left (x \right ) \]

15420

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 3 x \,{\mathrm e}^{x} \cos \left (x \right ) \]

15421

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 5 x^{5} {\mathrm e}^{2 x} \]

15422

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = 27 \,{\mathrm e}^{6 x}+25 \sin \left (6 x \right ) \]

15423

\[ {} y^{\prime \prime }+9 y = 25 x \cos \left (2 x \right )+3 \sin \left (3 x \right ) \]

15424

\[ {} y^{\prime \prime }-4 y^{\prime }+5 y = 5 \sin \left (x \right )^{2} \]

15425

\[ {} y^{\prime \prime }-4 y^{\prime }+5 y = 20 \sinh \left (x \right ) \]

15426

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = \frac {5}{x^{3}} \]

15427

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+y = \frac {50}{x^{3}} \]

15428

\[ {} 2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 85 \cos \left (2 \ln \left (x \right )\right ) \]

15429

\[ {} x^{2} y^{\prime \prime }-2 y = 15 \cos \left (3 \ln \left (x \right )\right )-10 \sin \left (3 \ln \left (x \right )\right ) \]

15430

\[ {} 3 x^{2} y^{\prime \prime }-7 x y^{\prime }+3 y = 4 x^{3} \]

15431

\[ {} 2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = \frac {10}{x} \]

15432

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 6 x^{3} \]

15433

\[ {} x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 64 \ln \left (x \right ) x^{2} \]

15434

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 3 \sqrt {x} \]

15435

\[ {} y^{\prime \prime }+y = \cot \left (x \right ) \]

15436

\[ {} y^{\prime \prime }+4 y = \csc \left (2 x \right ) \]

15437

\[ {} y^{\prime \prime }-7 y^{\prime }+10 y = 6 \,{\mathrm e}^{3 x} \]

15438

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = \left (24 x^{2}+2\right ) {\mathrm e}^{2 x} \]

15439

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 x}}{x^{2}+1} \]

15440

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y = \sqrt {x} \]

15441

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 12 x^{3} \]

15442

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{2} \]

15443

\[ {} x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = \ln \left (x \right ) \]

15444

\[ {} x^{2} y^{\prime \prime }-2 y = \frac {1}{x -2} \]

15445

\[ {} x y^{\prime \prime }-y^{\prime }-4 x^{3} y = x^{3} {\mathrm e}^{x^{2}} \]

15446

\[ {} x y^{\prime \prime }+\left (2+2 x \right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x} \]

15447

\[ {} \left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1+x \right )^{2} \]

15448

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y = \frac {10}{x} \]

15449

\[ {} y^{\prime \prime }-y^{\prime }-6 y = 12 \,{\mathrm e}^{2 x} \]

15450

\[ {} y^{\prime \prime \prime }-4 y^{\prime } = 30 \,{\mathrm e}^{3 x} \]

15451

\[ {} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = x^{3} \]

15452

\[ {} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = {\mathrm e}^{-x^{2}} \]

15453

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = \tan \left (x \right ) \]

15454

\[ {} y^{\prime \prime \prime \prime }-81 y = \sinh \left (x \right ) \]

15455

\[ {} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 x y^{\prime }+9 y = 12 x \sin \left (x^{2}\right ) \]

15456

\[ {} y^{\prime \prime }+36 y = 0 \]

15457

\[ {} y^{\prime \prime }-12 y^{\prime }+36 y = 0 \]

15458

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

15459

\[ {} y^{\prime \prime }-36 y = 0 \]

15460

\[ {} y^{\prime \prime }-9 y^{\prime }+14 y = 0 \]

15461

\[ {} x^{2} y^{\prime \prime }-7 x y^{\prime }+16 y = 0 \]

15462

\[ {} 2 x y^{\prime \prime }+y^{\prime } = \sqrt {x} \]

15463

\[ {} y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]

15464

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

15465

\[ {} y^{\prime \prime }+3 y = 0 \]

15466

\[ {} x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0 \]

15467

\[ {} x^{2} y^{\prime \prime }+\frac {5 y}{2} = 0 \]

15468

\[ {} y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+13 y^{\prime \prime \prime } = 0 \]

15469

\[ {} x^{2} y^{\prime \prime }-6 y = 0 \]

15470

\[ {} y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

15471

\[ {} y^{\prime \prime } = {y^{\prime }}^{2} \]

15472

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 0 \]

15473

\[ {} y^{\prime \prime }-8 y^{\prime }+25 y = 0 \]

15474

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }-30 y = 0 \]

15475

\[ {} y^{\prime \prime }+y^{\prime }-30 y = 0 \]

15476

\[ {} 16 y^{\prime \prime }-8 y^{\prime }+y = 0 \]

15477

\[ {} 4 x^{2} y^{\prime \prime }+8 x y^{\prime }+y = 0 \]

15478

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime } = 8 \]

15479

\[ {} 2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y = 0 \]

15480

\[ {} 9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

15481

\[ {} y^{\prime \prime \prime \prime }-16 y = 0 \]

15482

\[ {} 2 y^{\prime \prime }-7 y^{\prime }+3 = 0 \]

15483

\[ {} y^{\prime \prime }+20 y^{\prime }+100 y = 0 \]

15484

\[ {} x y^{\prime \prime } = 3 y^{\prime } \]

15485

\[ {} y^{\prime \prime }-5 y^{\prime } = 0 \]

15486

\[ {} y^{\prime \prime }-9 y^{\prime }+14 y = 98 x^{2} \]

15487

\[ {} y^{\prime \prime }-12 y^{\prime }+36 y = 25 \sin \left (3 x \right ) \]

15488

\[ {} y^{\prime \prime }-9 y^{\prime }+14 y = 576 x^{2} {\mathrm e}^{-x} \]

15489

\[ {} y^{\prime \prime }-12 y^{\prime }+36 y = 81 \,{\mathrm e}^{3 x} \]

15490

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 3 \sqrt {x} \]

15491

\[ {} y^{\prime \prime }-12 y^{\prime }+36 y = 3 x \,{\mathrm e}^{6 x}-2 \,{\mathrm e}^{6 x} \]

15492

\[ {} y^{\prime \prime }+36 y = 6 \sec \left (6 x \right ) \]

15493

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 18 \ln \left (x \right ) \]

15494

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 10 \,{\mathrm e}^{-3 x} \]

15495

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }-2 y = 10 x^{2} \]

15496

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 2 \cos \left (2 x \right ) \]

15497

\[ {} x y^{\prime \prime }-y^{\prime } = -3 x {y^{\prime }}^{3} \]

15498

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+2 y = 6 \]

15499

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y = \frac {1}{x^{2}+1} \]

15500

\[ {} 4 y^{\prime \prime }-12 y^{\prime }+9 y = x \,{\mathrm e}^{\frac {3 x}{2}} \]