6.168 Problems 16701 to 16800

Table 6.335: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

16701

\[ {}y^{\prime } = 2 y-2 x^{2}-3 \]

16702

\[ {}x y^{\prime } = 2 x -y \]

16703

\[ {}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

16704

\[ {}1+y^{2}+x y y^{\prime } = 0 \]

16705

\[ {}\sin \left (x \right ) y^{\prime }-y \cos \left (x \right ) = 0 \]

16706

\[ {}1+y^{2} = x y^{\prime } \]

16707

\[ {}x \sqrt {1+y^{2}}+y y^{\prime } \sqrt {x^{2}+1} = 0 \]

16708

\[ {}x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0 \]

16709

\[ {}{\mathrm e}^{-y} y^{\prime } = 1 \]

16710

\[ {}y \ln \left (y\right )+x y^{\prime } = 1 \]

16711

\[ {}y^{\prime } = a^{x +y} \]

16712

\[ {}{\mathrm e}^{y} \left (x^{2}+1\right ) y^{\prime }-2 x \left (1+{\mathrm e}^{y}\right ) = 0 \]

16713

\[ {}2 x \sqrt {1-y^{2}} = \left (x^{2}+1\right ) y^{\prime } \]

16714

\[ {}{\mathrm e}^{x} \sin \left (y\right )^{3}+\left (1+{\mathrm e}^{2 x}\right ) \cos \left (y\right ) y^{\prime } = 0 \]

16715

\[ {}y^{2} \sin \left (x \right )+\cos \left (x \right )^{2} \ln \left (y\right ) y^{\prime } = 0 \]

16716

\[ {}y^{\prime } = \sin \left (x -y\right ) \]

16717

\[ {}y^{\prime } = a x +b y+c \]

16718

\[ {}\left (x +y\right )^{2} y^{\prime } = a^{2} \]

16719

\[ {}x y^{\prime }+y = a \left (x y+1\right ) \]

16720

\[ {}a^{2}+y^{2}+2 x \sqrt {a x -x^{2}}\, y^{\prime } = 0 \]

16721

\[ {}y^{\prime } = \frac {y}{x} \]

16722

\[ {}\cos \left (y^{\prime }\right ) = 0 \]

16723

\[ {}{\mathrm e}^{y^{\prime }} = 1 \]

16724

\[ {}\sin \left (y^{\prime }\right ) = x \]

16725

\[ {}\ln \left (y^{\prime }\right ) = x \]

16726

\[ {}\tan \left (y^{\prime }\right ) = 0 \]

16727

\[ {}{\mathrm e}^{y^{\prime }} = x \]

16728

\[ {}\tan \left (y^{\prime }\right ) = x \]

16729

\[ {}x^{2} y^{\prime } \cos \left (y\right )+1 = 0 \]

16730

\[ {}x^{2} y^{\prime }+\cos \left (2 y\right ) = 1 \]

16731

\[ {}x^{3} y^{\prime }-\sin \left (y\right ) = 1 \]

16732

\[ {}\left (x^{2}+1\right ) y^{\prime }-\frac {\cos \left (2 y\right )^{2}}{2} = 0 \]

16733

\[ {}{\mathrm e}^{y} = {\mathrm e}^{4 y} y^{\prime }+1 \]

16734

\[ {}\left (1+x \right ) y^{\prime } = y-1 \]

16735

\[ {}y^{\prime } = 2 x \left (\pi +y\right ) \]

16736

\[ {}x^{2} y^{\prime }+\sin \left (2 y\right ) = 1 \]

16737

\[ {}x y^{\prime } = y+x \cos \left (\frac {y}{x}\right )^{2} \]

16738

\[ {}x -y+x y^{\prime } = 0 \]

16739

\[ {}x y^{\prime } = y \left (\ln \left (y\right )-\ln \left (x \right )\right ) \]

16740

\[ {}x^{2} y^{\prime } = y^{2}-x y+x^{2} \]

16741

\[ {}x y^{\prime } = y+\sqrt {y^{2}-x^{2}} \]

16742

\[ {}2 x^{2} y^{\prime } = x^{2}+y^{2} \]

16743

\[ {}4 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0 \]

16744

\[ {}y-x +\left (x +y\right ) y^{\prime } = 0 \]

16745

\[ {}x +y-2+\left (1-x \right ) y^{\prime } = 0 \]

16746

\[ {}3 y-7 x +7-\left (3 x -7 y-3\right ) y^{\prime } = 0 \]

16747

\[ {}x +y-2+\left (x -y+4\right ) y^{\prime } = 0 \]

16748

\[ {}x +y+\left (x -y-2\right ) y^{\prime } = 0 \]

16749

\[ {}2 x +3 y-5+\left (3 x +2 y-5\right ) y^{\prime } = 0 \]

16750

\[ {}8 x +4 y+1+\left (4 x +2 y+1\right ) y^{\prime } = 0 \]

16751

\[ {}x -2 y-1+\left (3 x -6 y+2\right ) y^{\prime } = 0 \]

16752

\[ {}x +y+\left (x +y-1\right ) y^{\prime } = 0 \]

16753

\[ {}2 x y^{\prime } \left (x -y^{2}\right )+y^{3} = 0 \]

16754

\[ {}4 y^{6}+x^{3} = 6 x y^{5} y^{\prime } \]

16755

\[ {}y \left (1+\sqrt {x^{2} y^{4}+1}\right )+2 x y^{\prime } = 0 \]

16756

\[ {}x +y^{3}+3 \left (y^{3}-x \right ) y^{2} y^{\prime } = 0 \]

16757

\[ {}y^{\prime }+2 y = {\mathrm e}^{-x} \]

16758

\[ {}x^{2}-x y^{\prime } = y \]

16759

\[ {}y^{\prime }-2 x y = 2 x \,{\mathrm e}^{x^{2}} \]

16760

\[ {}y^{\prime }+2 x y = {\mathrm e}^{-x^{2}} \]

16761

\[ {}y^{\prime } \cos \left (x \right )-y \sin \left (x \right ) = 2 x \]

16762

\[ {}x y^{\prime }-2 y = x^{3} \cos \left (x \right ) \]

16763

\[ {}y^{\prime }-y \tan \left (x \right ) = \frac {1}{\cos \left (x \right )^{3}} \]

16764

\[ {}y^{\prime } x \ln \left (x \right )-y = 3 x^{3} \ln \left (x \right )^{2} \]

16765

\[ {}\left (2 x -y^{2}\right ) y^{\prime } = 2 y \]

16766

\[ {}y^{\prime }+y \cos \left (x \right ) = \cos \left (x \right ) \]

16767

\[ {}y^{\prime } = \frac {y}{2 y \ln \left (y\right )+y-x} \]

16768

\[ {}\left (\frac {{\mathrm e}^{-y^{2}}}{2}-x y\right ) y^{\prime }-1 = 0 \]

16769

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 2 x \,{\mathrm e}^{{\mathrm e}^{x}} \]

16770

\[ {}y^{\prime }+x y \,{\mathrm e}^{x} = {\mathrm e}^{\left (1-x \right ) {\mathrm e}^{x}} \]

16771

\[ {}y^{\prime }-y \ln \left (2\right ) = 2^{\sin \left (x \right )} \left (-1+\cos \left (x \right )\right ) \ln \left (2\right ) \]

16772

\[ {}y^{\prime }-y = -2 \,{\mathrm e}^{-x} \]

16773

\[ {}\sin \left (x \right ) y^{\prime }-y \cos \left (x \right ) = -\frac {\sin \left (x \right )^{2}}{x^{2}} \]

16774

\[ {}x^{2} y^{\prime } \cos \left (\frac {1}{x}\right )-y \sin \left (\frac {1}{x}\right ) = -1 \]

16775

\[ {}2 x y^{\prime }-y = 1-\frac {2}{\sqrt {x}} \]

16776

\[ {}x^{2} y^{\prime }+y = \left (x^{2}+1\right ) {\mathrm e}^{x} \]

16777

\[ {}x y^{\prime }+y = 2 x \]

16778

\[ {}\sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 1 \]

16779

\[ {}y^{\prime } \cos \left (x \right )-y \sin \left (x \right ) = -\sin \left (2 x \right ) \]

16780

\[ {}y^{\prime }+2 x y = 2 x y^{2} \]

16781

\[ {}3 y^{2} y^{\prime } x -2 y^{3} = x^{3} \]

16782

\[ {}\left (x^{3}+{\mathrm e}^{y}\right ) y^{\prime } = 3 x^{2} \]

16783

\[ {}y^{\prime }+3 x y = y \,{\mathrm e}^{x^{2}} \]

16784

\[ {}y^{\prime }-2 y \,{\mathrm e}^{x} = 2 \sqrt {y \,{\mathrm e}^{x}} \]

16785

\[ {}2 y^{\prime } \ln \left (x \right )+\frac {y}{x} = \frac {\cos \left (x \right )}{y} \]

16786

\[ {}2 \sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = y^{3} \sin \left (x \right )^{2} \]

16787

\[ {}\left (x^{2}+y^{2}+1\right ) y^{\prime }+x y = 0 \]

16788

\[ {}y^{\prime }-y \cos \left (x \right ) = y^{2} \cos \left (x \right ) \]

16789

\[ {}y^{\prime }-\tan \left (y\right ) = \frac {{\mathrm e}^{x}}{\cos \left (y\right )} \]

16790

\[ {}y^{\prime } = y \left ({\mathrm e}^{x}+\ln \left (y\right )\right ) \]

16791

\[ {}y^{\prime } \cos \left (y\right )+\sin \left (y\right ) = 1+x \]

16792

\[ {}y y^{\prime }+1 = \left (x -1\right ) {\mathrm e}^{-\frac {y^{2}}{2}} \]

16793

\[ {}y^{\prime }+x \sin \left (2 y\right ) = 2 x \,{\mathrm e}^{-x^{2}} \cos \left (y\right )^{2} \]

16794

\[ {}x \left (2 x^{2}+y^{2}\right )+y \left (2 y^{2}+x^{2}\right ) y^{\prime } = 0 \]

16795

\[ {}3 x^{2}+6 x y^{2}+\left (6 x^{2} y+4 y^{3}\right ) y^{\prime } = 0 \]

16796

\[ {}\frac {x}{\sqrt {x^{2}+y^{2}}}+\frac {1}{x}+\frac {1}{y}+\left (\frac {y}{\sqrt {x^{2}+y^{2}}}+\frac {1}{y}-\frac {x}{y^{2}}\right ) y^{\prime } = 0 \]

16797

\[ {}3 x^{2} \tan \left (y\right )-\frac {2 y^{3}}{x^{3}}+\left (x^{3} \sec \left (y\right )^{2}+4 y^{3}+\frac {3 y^{2}}{x^{2}}\right ) y^{\prime } = 0 \]

16798

\[ {}2 x +\frac {x^{2}+y^{2}}{x^{2} y} = \frac {\left (x^{2}+y^{2}\right ) y^{\prime }}{x y^{2}} \]

16799

\[ {}\frac {\sin \left (2 x \right )}{y}+x +\left (y-\frac {\sin \left (x \right )^{2}}{y^{2}}\right ) y^{\prime } = 0 \]

16800

\[ {}3 x^{2}-2 x -y+\left (2 y-x +3 y^{2}\right ) y^{\prime } = 0 \]