6.165 Problems 16401 to 16500

Table 6.329: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

16401

\[ {} 4 x^{2} y^{\prime \prime }+y = x^{3} \]

16402

\[ {} 9 x^{2} y^{\prime \prime }+27 x y^{\prime }+10 y = \frac {1}{x} \]

16403

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

16404

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

16405

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

16406

\[ {} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+37 x y^{\prime } = 0 \]

16407

\[ {} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 x y^{\prime } = 0 \]

16408

\[ {} x^{3} y^{\prime \prime \prime }+x y^{\prime }-y = 0 \]

16409

\[ {} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 x y^{\prime } = -8 \]

16410

\[ {} \left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

16411

\[ {} \left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right ) \]

16412

\[ {} \left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

16413

\[ {} \left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right ) \]

16414

\[ {} \left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

16415

\[ {} \left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (4 x^{2}-4\right ) y = 0 \]

16416

\[ {} \left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

16417

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

16418

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y = x^{2} \]

16419

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

16420

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

16421

\[ {} x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+79 x y^{\prime }+125 y = 0 \]

16422

\[ {} x^{4} y^{\prime \prime \prime \prime }+5 x^{3} y^{\prime \prime \prime }-12 x^{2} y^{\prime \prime }-12 x y^{\prime }+48 y = 0 \]

16423

\[ {} x^{4} y^{\prime \prime \prime \prime }+14 x^{3} y^{\prime \prime \prime }+55 x^{2} y^{\prime \prime }+65 x y^{\prime }+15 y = 0 \]

16424

\[ {} x^{4} y^{\prime \prime \prime \prime }+8 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+35 x y^{\prime }+45 y = 0 \]

16425

\[ {} x^{4} y^{\prime \prime \prime \prime }+10 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+21 x y^{\prime }+4 y = 0 \]

16426

\[ {} x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+44 x y^{\prime }+58 y = 0 \]

16427

\[ {} 6 x^{2} y^{\prime \prime }+5 x y^{\prime }-y = 0 \]

16428

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+7 y = 0 \]

16429

\[ {} \left (x -2\right ) y^{\prime \prime }+y^{\prime }-y = 0 \]

16430

\[ {} \left (x^{2}-4\right ) y^{\prime \prime }+16 \left (x +2\right ) y^{\prime }-y = 0 \]

16431

\[ {} y^{\prime \prime }+3 y^{\prime }-18 y = 0 \]

16432

\[ {} y^{\prime \prime }-11 y^{\prime }+30 y = 0 \]

16433

\[ {} y^{\prime \prime }+y = 0 \]

16434

\[ {} y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{-x} \]

16435

\[ {} \left (-2-2 x \right ) y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

16436

\[ {} \left (3 x +2\right ) y^{\prime \prime }+3 x y^{\prime } = 0 \]

16437

\[ {} \left (3 x +1\right ) y^{\prime \prime }-3 y^{\prime }-2 y = 0 \]

16438

\[ {} \left (-x^{2}+2\right ) y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }+4 y = 0 \]

16439

\[ {} y^{\prime \prime }-x y^{\prime }+4 y = 0 \]

16440

\[ {} \left (2 x^{2}+2\right ) y^{\prime \prime }+2 x y^{\prime }-3 y = 0 \]

16441

\[ {} \left (3-2 x \right ) y^{\prime \prime }+2 y^{\prime }-2 y = 0 \]

16442

\[ {} y^{\prime \prime }-4 x^{2} y = 0 \]

16443

\[ {} \left (2 x^{2}-1\right ) y^{\prime \prime }+2 x y^{\prime }-3 y = 0 \]

16444

\[ {} y^{\prime \prime }+x y^{\prime } = \sin \left (x \right ) \]

16445

\[ {} y^{\prime \prime }+y^{\prime }+x y = \cos \left (x \right ) \]

16446

\[ {} y^{\prime \prime }+\left (-1+y^{2}\right ) y^{\prime }+y = 0 \]

16447

\[ {} y^{\prime \prime }+\left (\frac {{y^{\prime }}^{2}}{3}-1\right ) y^{\prime }+y = 0 \]

16448

\[ {} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

16449

\[ {} y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]

16450

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

16451

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+9 y = 0 \]

16452

\[ {} y^{\prime \prime }-\cos \left (x \right ) y = \sin \left (x \right ) \]

16453

\[ {} x^{2} y^{\prime \prime }+6 y = 0 \]

16454

\[ {} x \left (1+x \right ) y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}+5 y = 0 \]

16455

\[ {} \left (x^{2}-3 x -4\right ) y^{\prime \prime }-\left (1+x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

16456

\[ {} \left (x^{2}-25\right )^{2} y^{\prime \prime }-\left (x +5\right ) y^{\prime }+10 y = 0 \]

16457

\[ {} 2 x y^{\prime \prime }-5 y^{\prime }-3 y = 0 \]

16458

\[ {} 5 x y^{\prime \prime }+8 y^{\prime }-x y = 0 \]

16459

\[ {} 9 x y^{\prime \prime }+14 y^{\prime }+\left (x -1\right ) y = 0 \]

16460

\[ {} 7 x y^{\prime \prime }+10 y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

16461

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x -1\right ) y = 0 \]

16462

\[ {} x y^{\prime \prime }+2 x y^{\prime }+y = 0 \]

16463

\[ {} y^{\prime \prime }+\frac {8 y^{\prime }}{3 x}-\left (\frac {2}{3 x^{2}}-1\right ) y = 0 \]

16464

\[ {} y^{\prime \prime }+\left (\frac {16}{3 x}-1\right ) y^{\prime }-\frac {16 y}{3 x^{2}} = 0 \]

16465

\[ {} y^{\prime \prime }+\left (\frac {1}{2 x}-2\right ) y^{\prime }-\frac {35 y}{16 x^{2}} = 0 \]

16466

\[ {} y^{\prime \prime }-\left (\frac {1}{x}+2\right ) y^{\prime }+\left (x +\frac {1}{x^{2}}\right ) y = 0 \]

16467

\[ {} x^{2} y^{\prime \prime }+7 x y^{\prime }-7 y = 0 \]

16468

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

16469

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

16470

\[ {} y^{\prime \prime }+x y = 0 \]

16471

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (-k^{2}+x^{2}\right ) y = 0 \]

16472

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+k \left (k +1\right ) y = 0 \]

16473

\[ {} x \left (1-x \right ) y^{\prime \prime }+\left (\frac {1}{2}-3 x \right ) y^{\prime }-y = 0 \]

16474

\[ {} x \left (1-x \right ) y^{\prime \prime }+y^{\prime }+2 y = 0 \]

16475

\[ {} x \left (1-x \right ) y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+2 y = 0 \]

16476

\[ {} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+k y = 0 \]

16477

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

16478

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (16 x^{2}-25\right ) y = 0 \]

16479

\[ {} y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

16480

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 0 \]

16481

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

16482

\[ {} \left (t +1\right )^{2} y^{\prime \prime }-2 \left (t +1\right ) y^{\prime }+2 y = 0 \]

16483

\[ {} t y^{\prime \prime }+2 y^{\prime }+t y = 0 \]

16484

\[ {} y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

16485

\[ {} 6 y^{\prime \prime }+5 y^{\prime }-4 y = 0 \]

16486

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

16487

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

16488

\[ {} y^{\prime \prime }-10 y^{\prime }+34 y = 0 \]

16489

\[ {} 2 y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

16490

\[ {} 15 y^{\prime \prime }-11 y^{\prime }+2 y = 0 \]

16491

\[ {} 20 y^{\prime \prime }+y^{\prime }-y = 0 \]

16492

\[ {} 12 y^{\prime \prime }+8 y^{\prime }+y = 0 \]

16493

\[ {} 2 y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime } = 0 \]

16494

\[ {} 9 y^{\prime \prime \prime }+36 y^{\prime \prime }+40 y^{\prime } = 0 \]

16495

\[ {} 9 y^{\prime \prime \prime }+12 y^{\prime \prime }+13 y^{\prime } = 0 \]

16496

\[ {} y^{\prime \prime }-2 y^{\prime }-8 y = -t \]

16497

\[ {} y^{\prime \prime }+5 y^{\prime } = 5 t^{2} \]

16498

\[ {} y^{\prime \prime }-4 y^{\prime } = -3 \sin \left (t \right ) \]

16499

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (2 t \right ) \]

16500

\[ {} y^{\prime \prime }-9 y = \frac {1}{1+{\mathrm e}^{3 t}} \]