6.167 Problems 16601 to 16700

Table 6.333: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

16601

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \ln \left (t \right ) \]

16602

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \ln \left (t \right ) \]

16603

\[ {}y^{\prime \prime }-2 t y^{\prime }+t^{2} y = 0 \]

16604

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

16605

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

16606

\[ {}t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0 \]

16607

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+8 y = 0 \]

16608

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

16609

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

16610

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

16611

\[ {}5 x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

16612

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+25 y = 0 \]

16613

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 8 x \]

16614

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

16615

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = x \,{\mathrm e}^{x} \]

16616

\[ {}\left (2 x^{2}-1\right ) y^{\prime \prime }+2 x y^{\prime }-3 y = 0 \]

16617

\[ {}3 x y^{\prime \prime }+11 y^{\prime }-y = 0 \]

16618

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }-2 y = 0 \]

16619

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+\left (-2 x^{2}+7\right ) y = 0 \]

16620

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }+10 y = 0 \]

16621

\[ {}x \left (1+x \right ) y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }-10 y = 0 \]

16622

\[ {}t \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right )+y y^{\prime } = 1 \]

16623

\[ {}4 x^{\prime \prime }+9 x = 0 \]

16624

\[ {}9 x^{\prime \prime }+4 x = 0 \]

16625

\[ {}x^{\prime \prime }+64 x = 0 \]

16626

\[ {}x^{\prime \prime }+100 x = 0 \]

16627

\[ {}x^{\prime \prime }+x = 0 \]

16628

\[ {}x^{\prime \prime }+4 x = 0 \]

16629

\[ {}x^{\prime \prime }+16 x = 0 \]

16630

\[ {}x^{\prime \prime }+256 x = 0 \]

16631

\[ {}x^{\prime \prime }+9 x = 0 \]

16632

\[ {}10 x^{\prime \prime }+\frac {x}{10} = 0 \]

16633

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]

16634

\[ {}\frac {x^{\prime \prime }}{32}+2 x^{\prime }+x = 0 \]

16635

\[ {}\frac {x^{\prime \prime }}{4}+2 x^{\prime }+x = 0 \]

16636

\[ {}4 x^{\prime \prime }+2 x^{\prime }+8 x = 0 \]

16637

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = 0 \]

16638

\[ {}x^{\prime \prime }+4 x^{\prime }+20 x = 0 \]

16639

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

16640

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} \cos \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

16641

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} t & 0\le t <1 \\ 2-t & 1\le t <2 \\ 0 & 2\le t \end {array}\right . \]

16642

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 1-t & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]

16643

\[ {}x^{\prime \prime }+x = \cos \left (t \right ) \]

16644

\[ {}x^{\prime \prime }+x = \cos \left (t \right ) \]

16645

\[ {}x^{\prime \prime }+x = \cos \left (\frac {9 t}{10}\right ) \]

16646

\[ {}x^{\prime \prime }+x = \cos \left (\frac {7 t}{10}\right ) \]

16647

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{10}+x = 3 \cos \left (2 t \right ) \]

16648

\[ {}[x^{\prime }\left (t \right ) = 6, y^{\prime }\left (t \right ) = \cos \left (t \right )] \]

16649

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = 1] \]

16650

\[ {}[x^{\prime }\left (t \right ) = 0, y^{\prime }\left (t \right ) = -2 y \left (t \right )] \]

16651

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )^{2}, y^{\prime }\left (t \right ) = {\mathrm e}^{t}] \]

16652

\[ {}[x_{1}^{\prime }\left (t \right ) = -3 x_{1} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 1] \]

16653

\[ {}[x_{1}^{\prime }\left (t \right ) = -x_{1} \left (t \right )+1, x_{2}^{\prime }\left (t \right ) = x_{2} \left (t \right )] \]

16654

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )+6 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right )] \]

16655

\[ {}[x^{\prime }\left (t \right ) = 8 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+6 y \left (t \right )] \]

16656

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

16657

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right )] \]

16658

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+1] \]

16659

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+\sin \left (2 t \right )] \]

16660

\[ {}x^{\prime \prime }-3 x^{\prime }+4 x = 0 \]

16661

\[ {}x^{\prime \prime }+6 x^{\prime }+9 x = 0 \]

16662

\[ {}x^{\prime \prime }+16 x = t \sin \left (t \right ) \]

16663

\[ {}x^{\prime \prime }+x = {\mathrm e}^{t} \]

16664

\[ {}y^{\prime } = x^{2}+y^{2} \]

16665

\[ {}y^{\prime } = \frac {x}{y} \]

16666

\[ {}y^{\prime } = y+3 y^{{1}/{3}} \]

16667

\[ {}y^{\prime } = \sqrt {x -y} \]

16668

\[ {}y^{\prime } = \sqrt {x^{2}-y}-x \]

16669

\[ {}y^{\prime } = \sqrt {1-y^{2}} \]

16670

\[ {}y^{\prime } = \frac {1+y}{x -y} \]

16671

\[ {}y^{\prime } = \sin \left (y\right )-\cos \left (x \right ) \]

16672

\[ {}y^{\prime } = 1-\cot \left (y\right ) \]

16673

\[ {}y^{\prime } = \left (3 x -y\right )^{{1}/{3}}-1 \]

16674

\[ {}y^{\prime } = \sin \left (x y\right ) \]

16675

\[ {}x y^{\prime }+y = \cos \left (x \right ) \]

16676

\[ {}y^{\prime }+2 y = {\mathrm e}^{x} \]

16677

\[ {}\left (-x^{2}+1\right ) y^{\prime }+x y = 2 x \]

16678

\[ {}y^{\prime } = 1+x \]

16679

\[ {}y^{\prime } = x +y \]

16680

\[ {}y^{\prime } = y-x \]

16681

\[ {}y^{\prime } = \frac {x}{2}-y+\frac {3}{2} \]

16682

\[ {}y^{\prime } = \left (y-1\right )^{2} \]

16683

\[ {}y^{\prime } = \left (y-1\right ) x \]

16684

\[ {}y^{\prime } = x^{2}-y^{2} \]

16685

\[ {}y^{\prime } = \cos \left (x -y\right ) \]

16686

\[ {}y^{\prime } = y-x^{2} \]

16687

\[ {}y^{\prime } = x^{2}+2 x -y \]

16688

\[ {}y^{\prime } = \frac {1+y}{x -1} \]

16689

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

16690

\[ {}y^{\prime } = 1-x \]

16691

\[ {}y^{\prime } = 2 x -y \]

16692

\[ {}y^{\prime } = x^{2}+y \]

16693

\[ {}y^{\prime } = -\frac {y}{x} \]

16694

\[ {}y^{\prime } = 1 \]

16695

\[ {}y^{\prime } = \frac {1}{x} \]

16696

\[ {}y^{\prime } = y \]

16697

\[ {}y^{\prime } = y^{2} \]

16698

\[ {}y^{\prime } = x^{2}-y^{2} \]

16699

\[ {}y^{\prime } = y^{2}+x \]

16700

\[ {}y^{\prime } = x +y \]