6.187 Problems 18601 to 18700

Table 6.373: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

18601

\[ {}y = x y^{\prime }+y^{\prime }-{y^{\prime }}^{3} \]

18602

\[ {}x y^{\prime \prime }+2 y^{\prime } = x y \]

18603

\[ {}y-2 x y^{\prime }-y {y^{\prime }}^{2} = 0 \]

18604

\[ {}y^{\prime }+\frac {x y}{x^{2}+1} = \frac {1}{x \left (x^{2}+1\right )} \]

18605

\[ {}y^{\prime \prime \prime }+\frac {3 y^{\prime \prime }}{x} = 0 \]

18606

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+5 y = \frac {1}{x} \]

18607

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 2 \,{\mathrm e}^{2 x} \]

18608

\[ {}v^{\prime \prime }+\frac {2 v^{\prime }}{r} = 0 \]

18609

\[ {}y^{\prime \prime }-2 y y^{\prime } = 0 \]

18610

\[ {}y^{\prime \prime }-{y^{\prime }}^{2}-y {y^{\prime }}^{3} = 0 \]

18611

\[ {}\left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = r y^{\prime \prime } \]

18612

\[ {}y^{\prime \prime \prime } y^{\prime }-3 {y^{\prime \prime }}^{2}+3 y^{\prime \prime } {y^{\prime }}^{2}-2 {y^{\prime }}^{4}-x {y^{\prime }}^{5} = 0 \]

18613

\[ {}\left (1+y^{2}\right ) y^{\prime \prime }-2 y {y^{\prime }}^{2}-2 \left (1+y^{2}\right ) y^{\prime } = y^{2} \left (1+y^{2}\right ) \]

18614

\[ {}y^{2} y^{\prime \prime \prime }-\left (3 y y^{\prime }+2 x y^{2}\right ) y^{\prime \prime }+\left (2 {y^{\prime }}^{2}+2 x y y^{\prime }+3 x^{2} y^{2}\right ) y^{\prime }+x^{3} y^{3} = 0 \]

18615

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

18616

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime } = 0 \]

18617

\[ {}x^{3} v^{\prime \prime \prime }+2 x^{2} v^{\prime \prime }+v = 0 \]

18618

\[ {}v^{\prime \prime }+\frac {2 x v^{\prime }}{x^{2}+1}+\frac {v}{\left (x^{2}+1\right )^{2}} = 0 \]

18619

\[ {}y^{\prime }+\frac {y}{x} = -x^{2}+1 \]

18620

\[ {}y^{\prime }+y \cot \left (x \right ) = \csc \left (x \right )^{2} \]

18621

\[ {}y^{\prime } = x -y \]

18622

\[ {}\left (x^{2}+1\right ) y^{\prime }+x^{2} y = x^{3}-x^{2} \arctan \left (x \right ) \]

18623

\[ {}y^{\prime }+\frac {x y}{x^{2}+1} = \frac {1}{x \left (x^{2}+1\right )} \]

18624

\[ {}x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}-1\right ) y = x^{3} \]

18625

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

18626

\[ {}x \left (-x^{2}+1\right ) y^{\prime }+\left (2 x^{2}-1\right ) y = a \,x^{3} \]

18627

\[ {}y^{\prime }+y \sin \left (x \right ) = y^{2} \sin \left (x \right ) \]

18628

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x y = a x y^{2} \]

18629

\[ {}y^{\prime }+y \cos \left (x \right ) = y^{n} \sin \left (2 x \right ) \]

18630

\[ {}3 y^{\prime } y^{2}+y^{3} = x -1 \]

18631

\[ {}y^{\prime }-\tan \left (x \right ) y = y^{4} \sec \left (x \right ) \]

18632

\[ {}y \sqrt {x^{2}-1}+x \sqrt {y^{2}-1}\, y^{\prime } = 0 \]

18633

\[ {}\left ({\mathrm e}^{y}+1\right ) \cos \left (x \right )+{\mathrm e}^{y} \sin \left (x \right ) y^{\prime } = 0 \]

18634

\[ {}\sqrt {2 a y-y^{2}}\, \csc \left (x \right )+y \tan \left (x \right ) y^{\prime } = 0 \]

18635

\[ {}y \left (3+y\right ) y^{\prime } = x \left (3+2 y\right ) \]

18636

\[ {}x^{3}-3 x^{2} y+5 x y^{2}-7 y^{3}+\left (y^{4}+2 y^{2}-x^{3}+5 x^{2} y-21 x y^{2}\right ) y^{\prime } = 0 \]

18637

\[ {}x^{3}+4 x y+y^{2}+\left (2 x^{2}+2 x y+4 y^{3}\right ) y^{\prime } = 0 \]

18638

\[ {}\sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

18639

\[ {}x^{2}+\ln \left (y\right )+\frac {x y^{\prime }}{y} = 0 \]

18640

\[ {}x \left (x -2 y\right ) y^{\prime }+2 y^{2}+x^{2} = 0 \]

18641

\[ {}5 x y y^{\prime }-x^{2}-y^{2} = 0 \]

18642

\[ {}\left (x^{2}+3 x y-y^{2}\right ) y^{\prime }-3 y^{2} = 0 \]

18643

\[ {}\left (x^{2}+2 x y\right ) y^{\prime }-3 x^{2}+2 x y-y^{2} = 0 \]

18644

\[ {}5 x y y^{\prime }-4 x^{2}-y^{2} = 0 \]

18645

\[ {}\left (x^{2}-2 x y\right ) y^{\prime }+x^{2}-3 x y+2 y^{2} = 0 \]

18646

\[ {}3 x^{2} y^{\prime }+2 x^{2}-3 y^{2} = 0 \]

18647

\[ {}\left (3 x +2 y-7\right ) y^{\prime } = 2 x -3 y+6 \]

18648

\[ {}\left (6 x -5 y+4\right ) y^{\prime } = 2 x -y+1 \]

18649

\[ {}\left (5 x -2 y+7\right ) y^{\prime } = x -3 y+2 \]

18650

\[ {}\left (x -3 y+4\right ) y^{\prime } = 5 x -7 y \]

18651

\[ {}\left (x -3 y+4\right ) y^{\prime } = 2 x -6 y+7 \]

18652

\[ {}\left (5 x -2 y+7\right ) y^{\prime } = 10 x -4 y+6 \]

18653

\[ {}\left (2 x -2 y+5\right ) y^{\prime } = x -y+3 \]

18654

\[ {}\left (6 x -4 y+1\right ) y^{\prime } = 3 x -2 y+1 \]

18655

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

18656

\[ {}y^{\prime \prime }+2 y^{\prime }-2 y = 0 \]

18657

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

18658

\[ {}2 y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-3 y = 0 \]

18659

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

18660

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime }-5 y = 0 \]

18661

\[ {}2 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

18662

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

18663

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \]

18664

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 2 \,{\mathrm e}^{2 x} \]

18665

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+3 y^{\prime } = x^{2} \]

18666

\[ {}y^{\prime \prime }-4 y^{\prime }+2 y = x \]

18667

\[ {}y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \]

18668

\[ {}y^{\prime \prime \prime }+5 y^{\prime \prime }+6 y^{\prime } = x \]

18669

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = x \]

18670

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \]

18671

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \]

18672

\[ {}y^{\prime \prime }+y = \cos \left (x \right ) \]

18673

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-4 y = x \]

18674

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

18675

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = \cos \left (x \right ) \]

18676

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \]

18677

\[ {}y^{\prime \prime \prime \prime }-y = x^{4} \]

18678

\[ {}e y^{\prime \prime } = \frac {P \left (\frac {L}{2}-x \right )}{2} \]

18679

\[ {}e y^{\prime \prime } = \frac {w \left (\frac {L^{2}}{4}-x^{2}\right )}{2} \]

18680

\[ {}e y^{\prime \prime } = -\frac {\left (w L +P \right ) x}{2}-\frac {w \,x^{2}}{2} \]

18681

\[ {}e y^{\prime \prime } = -P \left (L -x \right ) \]

18682

\[ {}e y^{\prime \prime } = -P L +\left (w L +P \right ) x -\frac {w \left (L^{2}+x^{2}\right )}{2} \]

18683

\[ {}e y^{\prime \prime } = P \left (-y+a \right ) \]

18684

\[ {}x^{3} y^{\prime \prime \prime }+7 x^{2} y^{\prime \prime }+8 x y^{\prime } = \ln \left (x \right )^{2} \]

18685

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }-8 y = x \]

18686

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = x^{3} \]

18687

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = \ln \left (x \right ) \]

18688

\[ {}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

18689

\[ {}x y^{\prime \prime }+2 y^{\prime } = 2 x \]

18690

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = \ln \left (x \right ) \]

18691

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 2 x \]

18692

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = x \]

18693

\[ {}y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+\csc \left (x \right )^{2} y = \cos \left (x \right ) \]

18694

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (3 x -2\right ) y^{\prime }+y = 0 \]

18695

\[ {}\left (3 x^{2}+x \right ) y^{\prime \prime }+2 \left (6 x +1\right ) y^{\prime }+6 y = \sin \left (x \right ) \]

18696

\[ {}\left (x^{3}+x^{2}-3 x +1\right ) y^{\prime \prime \prime }+\left (9 x^{2}+6 x -9\right ) y^{\prime \prime }+\left (18 x +6\right ) y^{\prime }+6 y = x^{3} \]

18697

\[ {}x^{2} y^{\prime \prime \prime }+5 x y^{\prime \prime }+4 y^{\prime } = -\frac {1}{x^{2}} \]

18698

\[ {}y^{\prime \prime } = \cos \left (x \right ) \]

18699

\[ {}x^{2} y^{\prime \prime } = \ln \left (x \right ) \]

18700

\[ {}y^{\prime \prime } = -a^{2} y \]