6.188 Problems 18701 to 18800

Table 6.375: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

18701

\[ {}y^{\prime \prime } = \frac {1}{y^{2}} \]

18702

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

18703

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 1 \]

18704

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-1-{y^{\prime }}^{2} = 0 \]

18705

\[ {}x y^{\prime \prime }+3 y^{\prime } = 3 x \]

18706

\[ {}x = y^{\prime \prime }+y^{\prime } \]

18707

\[ {}x = y+{y^{\prime }}^{2} \]

18708

\[ {}y = x y^{\prime }-{y^{\prime }}^{2} \]

18709

\[ {}V^{\prime \prime }+\frac {2 V^{\prime }}{r} = 0 \]

18710

\[ {}V^{\prime \prime }+\frac {V^{\prime }}{r} = 0 \]

18711

\[ {}[z^{\prime }\left (x \right )+7 y \left (x \right )-3 z \left (x \right ) = 0, 7 y^{\prime }\left (x \right )+63 y \left (x \right )-36 z \left (x \right ) = 0] \]

18712

\[ {}[z^{\prime }\left (x \right )+2 y^{\prime }\left (x \right )+3 y \left (x \right ) = 0, y^{\prime }\left (x \right )+3 y \left (x \right )-2 z \left (x \right ) = 0] \]

18713

\[ {}[y^{\prime }\left (x \right )+3 y \left (x \right )+z \left (x \right ) = 0, z^{\prime }\left (x \right )+3 y \left (x \right )+5 z \left (x \right ) = 0] \]

18714

\[ {}[y^{\prime }\left (x \right )+3 y \left (x \right )+2 z \left (x \right ) = 0, z^{\prime }\left (x \right )+2 y \left (x \right )-4 z \left (x \right ) = 0] \]

18715

\[ {}[y^{\prime }\left (x \right )-3 y \left (x \right )-2 z \left (x \right ) = 0, z^{\prime }\left (x \right )+y \left (x \right )-2 z \left (x \right ) = 0] \]

18716

\[ {}[y^{\prime }\left (x \right )+z^{\prime }\left (x \right )+6 y \left (x \right ) = 0, z^{\prime }\left (x \right )+5 y \left (x \right )+z \left (x \right ) = 0] \]

18717

\[ {}[z^{\prime }\left (x \right )+y^{\prime }\left (x \right )+5 y \left (x \right )-3 z \left (x \right ) = x +{\mathrm e}^{x}, y^{\prime }\left (x \right )+2 y \left (x \right )-z \left (x \right ) = {\mathrm e}^{x}] \]

18718

\[ {}[z^{\prime }\left (x \right )+y \left (x \right )+3 z \left (x \right ) = {\mathrm e}^{x}, y^{\prime }\left (x \right )+3 y \left (x \right )+4 z \left (x \right ) = {\mathrm e}^{2 x}] \]

18719

\[ {}[z^{\prime }\left (x \right )-3 y \left (x \right )+2 z \left (x \right ) = {\mathrm e}^{x}, y^{\prime }\left (x \right )+2 y \left (x \right )-z \left (x \right ) = {\mathrm e}^{3 x}] \]

18720

\[ {}[z^{\prime }\left (x \right )+5 y \left (x \right )-2 z \left (x \right ) = x, y^{\prime }\left (x \right )+4 y \left (x \right )+z \left (x \right ) = x] \]

18721

\[ {}[z^{\prime }\left (x \right )+7 y \left (x \right )-9 z \left (x \right ) = {\mathrm e}^{x}, y^{\prime }\left (x \right )-y \left (x \right )-3 z \left (x \right ) = {\mathrm e}^{2 x}] \]

18722

\[ {}[y^{\prime }\left (x \right )-2 y \left (x \right )-2 z \left (x \right ) = {\mathrm e}^{3 x}, z^{\prime }\left (x \right )+5 y \left (x \right )-2 z \left (x \right ) = {\mathrm e}^{4 x}] \]

18723

\[ {}{y^{\prime }}^{2}+x y^{\prime }-y = 0 \]

18724

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = 0 \]

18725

\[ {}v^{\prime \prime }+\frac {2 v^{\prime }}{r} = 0 \]

18726

\[ {}y^{\prime \prime }-k^{2} y = 0 \]

18727

\[ {}\left (1-x \right ) y^{\prime }-1-y = 0 \]

18728

\[ {}y^{\prime }+\sqrt {\frac {1-y^{2}}{-x^{2}+1}} = 0 \]

18729

\[ {}-x y^{\prime }+y = a \left (y^{2}+y^{\prime }\right ) \]

18730

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

18731

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

18732

\[ {}y^{2}+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

18733

\[ {}x^{2} y-\left (y^{3}+x^{3}\right ) y^{\prime } = 0 \]

18734

\[ {}\left (4 y+3 x \right ) y^{\prime }+y-2 x = 0 \]

18735

\[ {}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0 \]

18736

\[ {}\left (y-3 x +3\right ) y^{\prime } = 2 y-x -4 \]

18737

\[ {}x^{2}-4 x y-2 y^{2}+\left (y^{2}-4 x y-2 x^{2}\right ) y^{\prime } = 0 \]

18738

\[ {}x +y y^{\prime }+\frac {x y^{\prime }-y}{x^{2}+y^{2}} = 0 \]

18739

\[ {}a^{2}-2 x y-y^{2}-\left (x +y\right )^{2} y^{\prime } = 0 \]

18740

\[ {}2 a x +b y+g +\left (2 c y+b x +e \right ) y^{\prime } = 0 \]

18741

\[ {}\left (2 x^{2} y+4 x^{3}-12 x y^{2}+3 y^{2}-x \,{\mathrm e}^{y}+{\mathrm e}^{2 x}\right ) y^{\prime }+12 x^{2} y+2 x y^{2}+4 x^{3}-4 y^{3}+2 y \,{\mathrm e}^{2 x}-{\mathrm e}^{y} = 0 \]

18742

\[ {}y-x y^{\prime }+\ln \left (x \right ) = 0 \]

18743

\[ {}\left (x y+1\right ) y-\left (1-x y\right ) x y^{\prime } = 0 \]

18744

\[ {}a \left (x y^{\prime }+2 y\right ) = x y y^{\prime } \]

18745

\[ {}x^{4} {\mathrm e}^{x}-2 m x y^{2}+2 m \,x^{2} y y^{\prime } = 0 \]

18746

\[ {}y \left (2 x y+{\mathrm e}^{x}\right )-{\mathrm e}^{x} y^{\prime } = 0 \]

18747

\[ {}x^{2} y-2 x y^{2}-\left (x^{3}-3 x^{2} y\right ) y^{\prime } = 0 \]

18748

\[ {}y \left (x y+2 x^{2} y^{2}\right )+x \left (x y-x^{2} y^{2}\right ) y^{\prime } = 0 \]

18749

\[ {}x^{2}+y^{2}+2 x +2 y y^{\prime } = 0 \]

18750

\[ {}x^{2}+y^{2}-x^{2} y y^{\prime } = 0 \]

18751

\[ {}3 x^{2} y^{4}+2 x y+\left (2 x^{3} y^{3}-x^{2}\right ) y^{\prime } = 0 \]

18752

\[ {}y^{4}+2 y+\left (x y^{3}+2 y^{4}-4 x \right ) y^{\prime } = 0 \]

18753

\[ {}y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

18754

\[ {}2 x^{2} y-3 y^{4}+\left (3 x^{3}+2 x y^{3}\right ) y^{\prime } = 0 \]

18755

\[ {}y^{2}+2 x^{2} y+\left (2 x^{3}-x y\right ) y^{\prime } = 0 \]

18756

\[ {}x y^{\prime }-a y = 1+x \]

18757

\[ {}y^{\prime }+y = {\mathrm e}^{-x} \]

18758

\[ {}\cos \left (x \right )^{2} y^{\prime }+y = \tan \left (x \right ) \]

18759

\[ {}\left (1+x \right ) y^{\prime }-n y = {\mathrm e}^{x} \left (1+x \right )^{n +1} \]

18760

\[ {}\left (x^{2}+1\right ) y^{\prime }+2 x y = 4 x^{2} \]

18761

\[ {}y^{\prime }+\frac {y}{x} = y^{6} x^{2} \]

18762

\[ {}1+y^{2} = \left (\arctan \left (y\right )-x \right ) y^{\prime } \]

18763

\[ {}y^{\prime }+\frac {2 y}{x} = 3 x^{2} y^{{1}/{3}} \]

18764

\[ {}y^{\prime }+\frac {x y}{-x^{2}+1} = x \sqrt {y} \]

18765

\[ {}3 x \left (-x^{2}+1\right ) y^{2} y^{\prime }+\left (2 x^{2}-1\right ) y^{3} = a \,x^{3} \]

18766

\[ {}\left (x +y\right )^{2} y^{\prime } = a^{2} \]

18767

\[ {}x y^{\prime }-y = \sqrt {x^{2}+y^{2}} \]

18768

\[ {}x y^{\prime }-y = x \sqrt {x^{2}+y^{2}} \]

18769

\[ {}\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0 \]

18770

\[ {}\left (x^{2}-x^{2} y\right ) y^{\prime }+y^{2}+x y^{2} = 0 \]

18771

\[ {}y^{\prime }+\frac {\left (1-2 x \right ) y}{x^{2}} = 1 \]

18772

\[ {}3 y^{\prime }+\frac {2 y}{1+x} = \frac {x^{3}}{y^{2}} \]

18773

\[ {}2 x -y+1+\left (2 y-x -1\right ) y^{\prime } = 0 \]

18774

\[ {}y^{\prime }+\frac {y}{\sqrt {-x^{2}+1}} = \frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \]

18775

\[ {}x y^{\prime }+\frac {y^{2}}{x} = y \]

18776

\[ {}x \left (-a^{2}+x^{2}+y^{2}\right )+y \left (x^{2}-y^{2}-b^{2}\right ) y^{\prime } = 0 \]

18777

\[ {}y^{\prime }+\frac {4 x y}{x^{2}+1} = \frac {1}{\left (x^{2}+1\right )^{3}} \]

18778

\[ {}x^{2} y-\left (y^{3}+x^{3}\right ) y^{\prime } = 0 \]

18779

\[ {}x \left (-x^{2}+1\right ) y^{\prime }+\left (2 x^{2}-1\right ) y = a \,x^{3} \]

18780

\[ {}x^{2}+y^{2}+1-2 x y y^{\prime } = 0 \]

18781

\[ {}x +y y^{\prime } = m \left (x y^{\prime }-y\right ) \]

18782

\[ {}y^{\prime }+y \cos \left (x \right ) = y^{n} \sin \left (2 x \right ) \]

18783

\[ {}\left (1+x \right ) y^{\prime }+1 = 2 \,{\mathrm e}^{y} \]

18784

\[ {}y^{\prime } = x^{3} y^{3}-x y \]

18785

\[ {}y+\left (a \,x^{2} y^{n}-2 x \right ) y^{\prime } = 0 \]

18786

\[ {}\left (1+6 y^{2}-3 x^{2} y\right ) y^{\prime } = 3 x y^{2}-x^{2} \]

18787

\[ {}y \left (x^{2}+y^{2}+a^{2}\right ) y^{\prime }+x \left (-a^{2}+x^{2}+y^{2}\right ) = 0 \]

18788

\[ {}\left (x^{2} y^{3}+x y\right ) y^{\prime } = 1 \]

18789

\[ {}y y^{\prime } = a x \]

18790

\[ {}\sqrt {a^{2}+x^{2}}\, y^{\prime }+y = \sqrt {a^{2}+x^{2}}-x \]

18791

\[ {}\left (x +y\right ) y^{\prime }+x -y = 0 \]

18792

\[ {}y y^{\prime }+b y^{2} = a \cos \left (x \right ) \]

18793

\[ {}2 x y+\left (y^{2}-x^{2}\right ) y^{\prime } = 0 \]

18794

\[ {}-x y^{\prime }+y = b \left (1+x^{2} y^{\prime }\right ) \]

18795

\[ {}3 y+2 x +4-\left (4 x +6 y+5\right ) y^{\prime } = 0 \]

18796

\[ {}\left (x^{3} y^{3}+x^{2} y^{2}+x y+1\right ) y+\left (x^{3} y^{3}-x^{2} y^{2}-x y+1\right ) x y^{\prime } = 0 \]

18797

\[ {}2 x^{2} y^{2}+y-\left (x^{3} y-3 x \right ) y^{\prime } = 0 \]

18798

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

18799

\[ {}y^{\prime }+\frac {n y}{x} = a \,x^{-n} \]

18800

\[ {}\left (x -y\right )^{2} y^{\prime } = a^{2} \]