|
# |
ODE |
Mathematica |
Maple |
Sympy |
|
\[
{} y^{\prime } = 2 x +1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \left (x -2\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \sqrt {x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {1}{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {1}{\sqrt {x +2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = x \sqrt {x^{2}+9}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {10}{x^{2}+1}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \cos \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {1}{\sqrt {-x^{2}+1}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = x \,{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime } = 50
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime } = -20
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime } = 3 t
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime } = 1+2 t
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime } = 4 \left (t +3\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime } = \frac {1}{\sqrt {t +4}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime } = \frac {1}{\left (t +1\right )^{3}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime } = 50 \sin \left (5 t \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = -y-\sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = x +y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = y-\sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = x -y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = y-x +1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = x -y+1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = x^{2}-y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = x^{2}-y-2
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 2 x^{2} y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = x \ln \left (y\right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } = y^{{1}/{3}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } = y^{{1}/{3}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \sqrt {x -y}
\]
|
✗ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \sqrt {x -y}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y y^{\prime } = x -1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y y^{\prime } = x -1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \ln \left (1+y^{2}\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = x^{2}-y^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } = x +y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = y-x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = x^{2}+y^{2}-1
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = x +\frac {y^{2}}{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime }+2 x y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+2 x y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \sin \left (x \right ) y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (1+x \right ) y^{\prime } = 4 y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 \sqrt {x}\, y^{\prime } = \sqrt {1-y^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 3 \sqrt {x y}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 64^{{1}/{3}} \left (x y\right )^{{1}/{3}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } = 2 x \sec \left (y\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (-x^{2}+1\right ) y^{\prime } = 2 y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (1+x \right )^{2} y^{\prime } = \left (y+1\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = x y^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y y^{\prime } = x \left (1+y^{2}\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{3} y^{\prime } = \left (1+y^{4}\right ) \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {1+\sqrt {x}}{1+\sqrt {y}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } = \frac {\left (x -1\right ) y^{5}}{x^{2} \left (2 y^{3}-y\right )}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x^{2}+1\right ) \tan \left (y\right ) y^{\prime } = x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 1+x +y+x y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime } = 1-x^{2}+y^{2}-x^{2} y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = y \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 3 x^{2} \left (1+y^{2}\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 y y^{\prime } = \frac {x}{\sqrt {x^{2}-16}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 4 x^{3} y-y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+1 = 2 y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \tan \left (x \right ) y^{\prime } = y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }-y = 2 x^{2} y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 2 x y^{2}+3 x^{2} y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 6 \,{\mathrm e}^{2 x -y}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 \sqrt {x}\, y^{\prime } = \cos \left (y\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {y^{\prime }}^{2} = 4 y
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } = 2 \sqrt {y}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } = y \sqrt {-1+y^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+y = 2
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }-2 y = 3 \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+3 y = 2 x \,{\mathrm e}^{-3 x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }-2 x y = {\mathrm e}^{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }+2 y = 3 x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }+5 y = 7 x^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x y^{\prime }+y = 10 \sqrt {x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 x y^{\prime }+y = 12 x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }-y = x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x y^{\prime }-3 y = 9 x^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }+y = 3 x y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }+3 y = 2 x^{5}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }-3 y = x^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+2 x y = x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \left (1-y\right ) \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (1+x \right ) y^{\prime }+y = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime } = 2 y+\cos \left (x \right ) x^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+\cot \left (x \right ) y = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 1+x +y+x y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime } = 3 y+x^{4} \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 2 x y+3 x^{2} {\mathrm e}^{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }+\left (2 x -3\right ) y = 4 x^{4}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{2}+4\right ) y^{\prime }+3 x y = x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{2}+1\right ) y^{\prime }+3 x^{3} y = 6 x \,{\mathrm e}^{-\frac {3 x^{2}}{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \frac {1-4 x y^{2}}{x^{\prime }} = y^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \frac {x+y \,{\mathrm e}^{y}}{x^{\prime }} = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \frac {1+2 x y}{x^{\prime }} = y^{2}+1
\]
|
✓ |
✓ |
✓ |
|