5.1.8 Problems 701 to 800

Table 5.15: Problems not solved by Mathematica

#

ODE

Mathematica

Maple

Sympy

14499

\[ {} [y_{1}^{\prime }\left (x \right ) = 2 x y_{1} \left (x \right )-x^{2} y_{2} \left (x \right )+4 x, y_{2}^{\prime }\left (x \right ) = {\mathrm e}^{x} y_{1} \left (x \right )+3 \,{\mathrm e}^{-x} y_{2} \left (x \right )-\cos \left (3 x \right )] \]

14567

\[ {} S^{\prime } = S^{3}-2 S^{2}+S \]

14568

\[ {} S^{\prime } = S^{3}-2 S^{2}+S \]

14571

\[ {} S^{\prime } = S^{3}-2 S^{2}+S \]

14592

\[ {} y^{\prime } = {\mathrm e}^{\frac {2}{y}} \]

14593

\[ {} y^{\prime } = {\mathrm e}^{\frac {2}{y}} \]

14595

\[ {} y^{\prime } = 2 y^{3}+t^{2} \]

14619

\[ {} y^{\prime } = \cos \left (y\right ) \]

14622

\[ {} w^{\prime } = w \cos \left (w\right ) \]

14623

\[ {} w^{\prime } = w \cos \left (w\right ) \]

14624

\[ {} w^{\prime } = w \cos \left (w\right ) \]

14691

\[ {} y^{\prime } = \left (y-3\right ) \left (\sin \left (y\right ) \sin \left (t \right )+\cos \left (t \right )+1\right ) \]

14714

\[ {} y^{\prime } = \left (y-1\right ) \left (y-2\right ) \left (y-{\mathrm e}^{\frac {t}{2}}\right ) \]

14907

\[ {} y^{2} y^{\prime \prime } = 8 x^{2} \]

14946

\[ {} \sin \left (x +y\right )-y y^{\prime } = 0 \]

15005

\[ {} y^{2} y^{\prime }+3 x^{2} y = \sin \left (x \right ) \]

15180

\[ {} y^{\prime \prime } = 2 y y^{\prime } \]

15181

\[ {} y^{\prime \prime } = 2 y y^{\prime } \]

15186

\[ {} y^{\prime \prime }+x^{2} y^{\prime }+4 y = y^{3} \]

15192

\[ {} y y^{\prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime } = y \]

15216

\[ {} x^{3} y^{\prime \prime \prime }-4 y^{\prime \prime }+10 y^{\prime }-12 y = 0 \]

15700

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ) y \left (t \right )-6 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )-5] \]

15703

\[ {} y y^{\prime }+y^{4} = \sin \left (x \right ) \]

15707

\[ {} x {y^{\prime \prime }}^{2}+2 y = 2 x \]

15708

\[ {} x^{\prime \prime }+2 \sin \left (x\right ) = \sin \left (2 t \right ) \]

15758

\[ {} 4 x \left (x^{2}+y^{2}\right )-5 y+4 y \left (x^{2}+y^{2}-5 x \right ) y^{\prime } = 0 \]

15783

\[ {} y^{\prime }+t^{2} = \frac {1}{y^{2}} \]

15857

\[ {} 1 = \cos \left (y\right ) y^{\prime } \]

15968

\[ {} 1-y^{2} \cos \left (t y\right )+\left (t y \cos \left (t y\right )+\sin \left (t y\right )\right ) y^{\prime } = 0 \]

15978

\[ {} {\mathrm e}^{y}-2 t y+\left (t \,{\mathrm e}^{y}-t^{2}\right ) y^{\prime } = 0 \]

15982

\[ {} \frac {1}{t^{2}+1}-y^{2}-2 t y y^{\prime } = 0 \]

15983

\[ {} \frac {2 t}{t^{2}+1}+y+\left ({\mathrm e}^{y}+t \right ) y^{\prime } = 0 \]

16039

\[ {} y^{4}+\left (t^{4}-t y^{3}\right ) y^{\prime } = 0 \]

16094

\[ {} y^{\prime } = \sqrt {x -y} \]

16125

\[ {} y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y = 0 \]

16169

\[ {} {y^{\prime \prime }}^{2}-5 y^{\prime \prime } y^{\prime }+4 y^{2} = 0 \]

16170

\[ {} {y^{\prime \prime }}^{2}-2 y^{\prime \prime } y^{\prime }+y^{2} = 0 \]

16592

\[ {} y^{\prime } = \sin \left (y\right )-\cos \left (x \right ) \]

16631

\[ {} y \ln \left (y\right )+x y^{\prime } = 1 \]

16650

\[ {} x^{2} y^{\prime } \cos \left (y\right )+1 = 0 \]

16651

\[ {} x^{2} y^{\prime }+\cos \left (2 y\right ) = 1 \]

16652

\[ {} x^{3} y^{\prime }-\sin \left (y\right ) = 1 \]

16653

\[ {} \left (x^{2}+1\right ) y^{\prime }-\frac {\cos \left (2 y\right )^{2}}{2} = 0 \]

16657

\[ {} x^{2} y^{\prime }+\sin \left (2 y\right ) = 1 \]

16717

\[ {} \frac {x}{\sqrt {x^{2}+y^{2}}}+\frac {1}{x}+\frac {1}{y}+\left (\frac {y}{\sqrt {x^{2}+y^{2}}}+\frac {1}{y}-\frac {x}{y^{2}}\right ) y^{\prime } = 0 \]

16718

\[ {} 3 x^{2} \tan \left (y\right )-\frac {2 y^{3}}{x^{3}}+\left (x^{3} \sec \left (y\right )^{2}+4 y^{3}+\frac {3 y^{2}}{x^{2}}\right ) y^{\prime } = 0 \]

16724

\[ {} \frac {y+\sin \left (x \right ) \cos \left (x y\right )^{2}}{\cos \left (x y\right )^{2}}+\left (\frac {x}{\cos \left (x y\right )^{2}}+\sin \left (y\right )\right ) y^{\prime } = 0 \]

16775

\[ {} {y^{\prime }}^{3}-4 x y y^{\prime }+8 y^{2} = 0 \]

16780

\[ {} 8 {y^{\prime }}^{3}-12 {y^{\prime }}^{2} = 27 y-27 x \]

16855

\[ {} y^{\prime \prime } = y^{\prime } \ln \left (y^{\prime }\right ) \]

16861

\[ {} y^{\prime \prime } = 2 y y^{\prime } \]

16862

\[ {} 3 y^{\prime } y^{\prime \prime } = 2 y \]

16872

\[ {} y^{\prime \prime \prime } = 3 y y^{\prime } \]

17033

\[ {} y^{\prime \prime }+4 y^{\prime }+3 y = 8 \,{\mathrm e}^{x}+9 \]

17035

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 2 \,{\mathrm e}^{x} \left (\sin \left (x \right )+7 \cos \left (x \right )\right ) \]

17036

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{-2 x} \left (9 \sin \left (2 x \right )+4 \cos \left (2 x \right )\right ) \]

17037

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{-x} \left (9 x^{2}+5 x -12\right ) \]

17087

\[ {} 2 x^{2} \left (2-\ln \left (x \right )\right ) y^{\prime \prime }+x \left (4-\ln \left (x \right )\right ) y^{\prime }-y = \frac {\left (2-\ln \left (x \right )\right )^{2}}{\sqrt {x}} \]

17095

\[ {} x^{\prime \prime }-2 {x^{\prime }}^{2}+x^{\prime }-2 x = 0 \]

17097

\[ {} x^{\prime \prime }+{\mathrm e}^{-x^{\prime }}-x = 0 \]

17100

\[ {} x^{\prime \prime }-x^{\prime }+x-x^{2} = 0 \]

17104

\[ {} y^{\prime \prime }+y = 0 \]

17110

\[ {} y^{\prime \prime }+\alpha ^{2} y = 1 \]

17125

\[ {} \ln \left (x \right ) y^{\prime \prime }-\sin \left (x \right ) y = 0 \]

17157

\[ {} \left [x^{\prime }\left (t \right ) = \frac {y \left (t \right )+t}{x \left (t \right )+y \left (t \right )}, y^{\prime }\left (t \right ) = \frac {t +x \left (t \right )}{x \left (t \right )+y \left (t \right )}\right ] \]

17168

\[ {} [x^{\prime \prime }\left (t \right ) = x \left (t \right )^{2}+y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right ) x^{\prime }\left (t \right )+x \left (t \right )] \]

17175

\[ {} \left [x^{\prime }\left (t \right ) = \cos \left (x \left (t \right )\right )^{2} \cos \left (y \left (t \right )\right )^{2}+\sin \left (x \left (t \right )\right )^{2} \cos \left (y \left (t \right )\right )^{2}, y^{\prime }\left (t \right ) = -\frac {\sin \left (2 x \left (t \right )\right ) \sin \left (2 y \left (t \right )\right )}{2}\right ] \]

17247

\[ {} \sin \left (2 x \right )+\cos \left (3 y\right ) y^{\prime } = 0 \]

17300

\[ {} y^{\prime } = \sqrt {1-t^{2}-y^{2}} \]

17301

\[ {} y^{\prime } = \frac {\ln \left (t y\right )}{1-t^{2}+y^{2}} \]

17302

\[ {} y^{\prime } = \left (t^{2}+y^{2}\right )^{{3}/{2}} \]

17323

\[ {} {\mathrm e}^{x} \sin \left (y\right )+3 y-\left (3 x -{\mathrm e}^{x} \sin \left (y\right )\right ) y^{\prime } = 0 \]

17339

\[ {} \frac {4 x^{3}}{y^{2}}+\frac {12}{y}+3 \left (\frac {x}{y^{2}}+4 y\right ) y^{\prime } = 0 \]

17383

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )+4, y^{\prime }\left (t \right ) = -2 x \left (t \right )+\sin \left (t \right ) y \left (t \right )] \]

17457

\[ {} [x^{\prime }\left (t \right ) = 2-y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )-x \left (t \right )^{2}] \]

17458

\[ {} \left [x^{\prime }\left (t \right ) = x \left (t \right )-x \left (t \right )^{2}-x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = \frac {y \left (t \right )}{2}-\frac {y \left (t \right )^{2}}{4}-\frac {3 x \left (t \right ) y \left (t \right )}{4}\right ] \]

17459

\[ {} [x^{\prime }\left (t \right ) = -\left (x \left (t \right )-y \left (t \right )\right ) \left (1-x \left (t \right )-y \left (t \right )\right ), y^{\prime }\left (t \right ) = x \left (t \right ) \left (2+y \left (t \right )\right )] \]

17460

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ) \left (2-x \left (t \right )-y \left (t \right )\right ), y^{\prime }\left (t \right ) = -x \left (t \right )-y \left (t \right )-2 x \left (t \right ) y \left (t \right )] \]

17461

\[ {} [x^{\prime }\left (t \right ) = \left (2+x \left (t \right )\right ) \left (-x \left (t \right )+y \left (t \right )\right ), y^{\prime }\left (t \right ) = y \left (t \right )-x \left (t \right )^{2}-y \left (t \right )^{2}] \]

17463

\[ {} \left [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-\frac {x \left (t \right )^{3}}{5}-\frac {y \left (t \right )}{5}\right ] \]

17465

\[ {} \left [x^{\prime }\left (t \right ) = x \left (t \right ) \left (1-x \left (t \right )-y \left (t \right )\right ), y^{\prime }\left (t \right ) = y \left (t \right ) \left (\frac {3}{4}-y \left (t \right )-\frac {x \left (t \right )}{2}\right )\right ] \]

17467

\[ {} y^{\prime \prime }+y^{\prime }+y+y^{3} = 0 \]

17470

\[ {} y^{\prime \prime }+\mu \left (1-y^{2}\right ) y^{\prime }+y = 0 \]

17481

\[ {} y^{\prime \prime }+\cos \left (t \right ) y^{\prime }+3 y \ln \left (t \right ) = 0 \]

17482

\[ {} \left (x +3\right ) y^{\prime \prime }+x y^{\prime }+y \ln \left (x \right ) = 0 \]

17483

\[ {} \left (x -2\right ) y^{\prime \prime }+y^{\prime }+\left (x -2\right ) \tan \left (x \right ) y = 0 \]

17606

\[ {} y^{\prime \prime }+y+\frac {y^{3}}{5} = \cos \left (w t \right ) \]

17607

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{5}+y+\frac {y^{3}}{5} = \cos \left (w t \right ) \]

17716

\[ {} t y^{\prime \prime \prime }+\sin \left (t \right ) y^{\prime \prime }+8 y = \cos \left (t \right ) \]

17717

\[ {} t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+4 t^{2} y = 0 \]

17718

\[ {} y^{\prime \prime \prime }+t y^{\prime \prime }+t^{2} y^{\prime }+t^{2} y = \ln \left (t \right ) \]

17719

\[ {} \left (x -4\right ) y^{\prime \prime \prime \prime }+\left (1+x \right ) y^{\prime \prime }+\tan \left (x \right ) y = 0 \]

17720

\[ {} \left (x^{2}-2\right ) y^{\left (6\right )}+x^{2} y^{\prime \prime }+3 y = 0 \]

17722

\[ {} t y^{\prime \prime \prime }+\sin \left (t \right ) y^{\prime \prime }+4 y = \cos \left (t \right ) \]

17723

\[ {} t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+7 t^{2} y = 0 \]

17724

\[ {} y^{\prime \prime \prime }+t y^{\prime \prime }+5 t^{2} y^{\prime }+2 t^{3} y = \ln \left (t \right ) \]

17725

\[ {} \left (x -1\right ) y^{\prime \prime \prime \prime }+\left (x +5\right ) y^{\prime \prime }+\tan \left (x \right ) y = 0 \]

17726

\[ {} \left (x^{2}-25\right ) y^{\left (6\right )}+x^{2} y^{\prime \prime }+5 y = 0 \]

17868

\[ {} y = 2 x y^{\prime }+\frac {x^{2}}{2}+{y^{\prime }}^{2} \]

17869

\[ {} y = \frac {k \left (x +y y^{\prime }\right )}{\sqrt {1+{y^{\prime }}^{2}}} \]