6.3 Problems 201 to 300

Table 6.5: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

201

\[ {}{\mathrm e}^{y}+y \cos \left (x \right )+\left (x \,{\mathrm e}^{y}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

202

\[ {}9 x^{2} y^{2}+x^{{3}/{2}} y^{\prime } = y^{2} \]

203

\[ {}2 y+\left (1+x \right ) y^{\prime } = 3 x +3 \]

204

\[ {}9 \sqrt {x}\, y^{{4}/{3}}-12 x^{{1}/{5}} y^{{3}/{2}}+\left (8 x^{{3}/{2}} y^{{1}/{3}}-15 x^{{6}/{5}} \sqrt {y}\right ) y^{\prime } = 0 \]

205

\[ {}3 y+y^{4} x^{3}+3 x y^{\prime } = 0 \]

206

\[ {}x y^{\prime }+y = 2 \,{\mathrm e}^{2 x} \]

207

\[ {}\left (2 x +1\right ) y^{\prime }+y = \left (2 x +1\right )^{{3}/{2}} \]

208

\[ {}y^{\prime } = \sqrt {x +y} \]

209

\[ {}y^{\prime } = 3 \left (y+7\right ) x^{2} \]

210

\[ {}y^{\prime } = x y^{3}-x y \]

211

\[ {}y^{\prime } = -\frac {3 x^{2}+2 y^{2}}{4 x y} \]

212

\[ {}y^{\prime } = \frac {3 y+x}{-3 x +y} \]

213

\[ {}y^{\prime } = \frac {2 x y+2 x}{x^{2}+1} \]

214

\[ {}y^{\prime } = \frac {\sqrt {y}-y}{\tan \left (x \right )} \]

215

\[ {}y^{\prime \prime }-y = 0 \]

216

\[ {}y^{\prime \prime }-9 y = 0 \]

217

\[ {}y^{\prime \prime }+4 y = 0 \]

218

\[ {}y^{\prime \prime }+25 y = 0 \]

219

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

220

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

221

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

222

\[ {}y^{\prime \prime }-3 y^{\prime } = 0 \]

223

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

224

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]

225

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

226

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]

227

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

228

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]

229

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

230

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

231

\[ {}y^{\prime }+y^{2} = 0 \]

232

\[ {}y y^{\prime \prime } = 6 x^{4} \]

233

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

234

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

235

\[ {}y^{\prime \prime }+2 y^{\prime }-15 y = 0 \]

236

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

237

\[ {}2 y^{\prime \prime }+3 y^{\prime } = 0 \]

238

\[ {}2 y^{\prime \prime }-y^{\prime }-y = 0 \]

239

\[ {}4 y^{\prime \prime }+8 y^{\prime }+3 y = 0 \]

240

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

241

\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

242

\[ {}6 y^{\prime \prime }-7 y^{\prime }-20 y = 0 \]

243

\[ {}35 y^{\prime \prime }-y^{\prime }-12 y = 0 \]

244

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

245

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]

246

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }-3 y = 0 \]

247

\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 0 \]

248

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

249

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 0 \]

250

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

251

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

252

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+8 y^{\prime }-4 y = 0 \]

253

\[ {}y^{\prime \prime \prime }+9 y^{\prime } = 0 \]

254

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0 \]

255

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

256

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 x y^{\prime }-4 y = 0 \]

257

\[ {}y^{\prime \prime }+y = 3 x \]

258

\[ {}y^{\prime \prime }-4 y = 12 \]

259

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 6 \]

260

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 2 x \]

261

\[ {}y^{\prime \prime }+2 y = 6 x +4 \]

262

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

263

\[ {}y^{\prime \prime }-2 y^{\prime }-5 y = 0 \]

264

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

265

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

266

\[ {}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

267

\[ {}\left (1+x \right ) y^{\prime \prime }-\left (x +2\right ) y^{\prime }+y = 0 \]

268

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

269

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

270

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

271

\[ {}y^{\prime \prime }-4 y = 0 \]

272

\[ {}2 y^{\prime \prime }-3 y^{\prime } = 0 \]

273

\[ {}y^{\prime \prime }+y^{\prime }-10 y = 0 \]

274

\[ {}2 y^{\prime \prime }-7 y^{\prime }+3 y = 0 \]

275

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

276

\[ {}y^{\prime \prime }+5 y^{\prime }+5 y = 0 \]

277

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

278

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 0 \]

279

\[ {}y^{\prime \prime }+8 y^{\prime }+25 y = 0 \]

280

\[ {}5 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime } = 0 \]

281

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+16 y^{\prime \prime } = 0 \]

282

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = 0 \]

283

\[ {}9 y^{\prime \prime \prime }+12 y^{\prime \prime }+4 y^{\prime } = 0 \]

284

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = 0 \]

285

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]

286

\[ {}y^{\prime \prime \prime \prime }+18 y^{\prime \prime }+81 y = 0 \]

287

\[ {}6 y^{\prime \prime \prime \prime }+11 y^{\prime \prime }+4 y = 0 \]

288

\[ {}y^{\prime \prime \prime \prime } = 16 y \]

289

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]

290

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

291

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]

292

\[ {}9 y^{\prime \prime }+6 y^{\prime }+4 y = 0 \]

293

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

294

\[ {}2 y^{\prime \prime \prime }-3 y^{\prime \prime }-2 y^{\prime } = 0 \]

295

\[ {}3 y^{\prime \prime \prime }+2 y^{\prime \prime } = 0 \]

296

\[ {}y^{\prime \prime \prime }+10 y^{\prime \prime }+25 y^{\prime } = 0 \]

297

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y = 0 \]

298

\[ {}2 y^{\prime \prime \prime }-y^{\prime \prime }-5 y^{\prime }-2 y = 0 \]

299

\[ {}y^{\prime \prime \prime }+27 y = 0 \]

300

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }+y^{\prime \prime }-3 y^{\prime }-6 y = 0 \]