5.2.43 Problems 4201 to 4300

Table 5.253: Second order linear ODE

#

ODE

Mathematica

Maple

14984

\[ {}y^{\prime \prime } = \frac {1+x}{x -1} \]

14985

\[ {}x^{2} y^{\prime \prime } = 1 \]

14987

\[ {}y^{\prime \prime }+3 y^{\prime }+8 y = {\mathrm e}^{-x^{2}} \]

14988

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime } = 0 \]

14998

\[ {}y^{\prime \prime } = \sin \left (2 x \right ) \]

14999

\[ {}y^{\prime \prime }-3 = x \]

15007

\[ {}x y^{\prime \prime }+2 = \sqrt {x} \]

15209

\[ {}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \]

15210

\[ {}x y^{\prime \prime } = 2 y^{\prime } \]

15211

\[ {}y^{\prime \prime } = y^{\prime } \]

15212

\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]

15213

\[ {}x y^{\prime \prime } = y^{\prime }-2 x^{2} y^{\prime } \]

15214

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \]

15221

\[ {}y^{\prime \prime } = 2 y^{\prime }-6 \]

15223

\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]

15231

\[ {}y^{\prime \prime } = y^{\prime } \]

15237

\[ {}x y^{\prime \prime }-y^{\prime } = 6 x^{5} \]

15241

\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]

15243

\[ {}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \]

15244

\[ {}x y^{\prime \prime } = 2 y^{\prime } \]

15245

\[ {}y^{\prime \prime } = y^{\prime } \]

15246

\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]

15249

\[ {}x y^{\prime \prime }+2 y^{\prime } = 6 \]

15262

\[ {}y^{\prime \prime }+x^{2} y^{\prime }-4 y = x^{3} \]

15263

\[ {}y^{\prime \prime }+x^{2} y^{\prime }-4 y = 0 \]

15264

\[ {}y^{\prime \prime }+x^{2} y^{\prime } = 4 y \]

15269

\[ {}y^{\prime \prime } = 2 y^{\prime }-5 y+30 \,{\mathrm e}^{3 x} \]

15272

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

15273

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]

15274

\[ {}x^{2} y^{\prime \prime }-6 x y^{\prime }+12 y = 0 \]

15275

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

15276

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

15277

\[ {}y^{\prime \prime }-\left (4+\frac {2}{x}\right ) y^{\prime }+\left (4+\frac {4}{x}\right ) y = 0 \]

15278

\[ {}\left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

15279

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-4 x^{2} y = 0 \]

15280

\[ {}y^{\prime \prime }+y = 0 \]

15281

\[ {}x y^{\prime \prime }+\left (2+2 x \right ) y^{\prime }+2 y = 0 \]

15282

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }-2 \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+\left (1+\cos \left (x \right )^{2}\right ) y = 0 \]

15283

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

15284

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

15285

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

15286

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 9 \,{\mathrm e}^{2 x} \]

15287

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = {\mathrm e}^{4 x} \]

15288

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = \sqrt {x} \]

15289

\[ {}x^{2} y^{\prime \prime }-20 y = 27 x^{5} \]

15290

\[ {}x y^{\prime \prime }+\left (2+2 x \right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x} \]

15291

\[ {}\left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1+x \right )^{2} \]

15296

\[ {}y^{\prime \prime }+4 y = 0 \]

15297

\[ {}y^{\prime \prime }-4 y = 0 \]

15298

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

15299

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

15300

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

15301

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }-y = 0 \]

15302

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

15303

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

15304

\[ {}\left (1+x \right )^{2} y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = 0 \]

15305

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

15306

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

15309

\[ {}y^{\prime \prime }-4 y = 0 \]

15310

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 0 \]

15311

\[ {}y^{\prime \prime }-10 y^{\prime }+9 y = 0 \]

15312

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

15315

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

15316

\[ {}y^{\prime \prime }+2 y^{\prime }-24 y = 0 \]

15317

\[ {}y^{\prime \prime }-25 y = 0 \]

15318

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]

15319

\[ {}4 y^{\prime \prime }-y = 0 \]

15320

\[ {}3 y^{\prime \prime }+7 y^{\prime }-6 y = 0 \]

15321

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]

15322

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]

15323

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]

15324

\[ {}y^{\prime \prime }-9 y = 0 \]

15325

\[ {}y^{\prime \prime }-9 y = 0 \]

15326

\[ {}y^{\prime \prime }-9 y = 0 \]

15327

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]

15328

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

15329

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

15330

\[ {}25 y^{\prime \prime }-10 y^{\prime }+y = 0 \]

15331

\[ {}16 y^{\prime \prime }-24 y^{\prime }+9 y = 0 \]

15332

\[ {}9 y^{\prime \prime }+12 y^{\prime }+4 y = 0 \]

15333

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

15334

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

15335

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

15336

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

15337

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

15338

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

15339

\[ {}y^{\prime \prime }+25 y = 0 \]

15340

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

15341

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

15342

\[ {}y^{\prime \prime }-4 y^{\prime }+29 y = 0 \]

15343

\[ {}9 y^{\prime \prime }+18 y^{\prime }+10 y = 0 \]

15344

\[ {}4 y^{\prime \prime }+y = 0 \]

15345

\[ {}y^{\prime \prime }+16 y = 0 \]

15346

\[ {}y^{\prime \prime }+16 y = 0 \]

15347

\[ {}y^{\prime \prime }+16 y = 0 \]

15348

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

15349

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

15350

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

15351

\[ {}y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0 \]

15352

\[ {}y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0 \]