5.2.57 Problems 5601 to 5700

Table 5.281: Second order linear ODE

#

ODE

Mathematica

Maple

19046

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{r} = 0 \]

19159

\[ {}y^{\prime \prime }-n^{2} y = 0 \]

19161

\[ {}2 x^{\prime \prime }+5 x^{\prime }-12 x = 0 \]

19162

\[ {}y^{\prime \prime }+3 y^{\prime }-54 y = 0 \]

19163

\[ {}9 x^{\prime \prime }+18 x^{\prime }-16 x = 0 \]

19165

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

19173

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{4 x} \]

19174

\[ {}y^{\prime \prime }-y = 2+5 x \]

19175

\[ {}y^{\prime \prime }+2 y^{\prime }-15 y = 15 x^{2} \]

19176

\[ {}y^{\prime \prime }+y = \sec \left (x \right )^{2} \]

19177

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \,{\mathrm e}^{\frac {5 x}{2}} \]

19178

\[ {}y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{-x} \]

19179

\[ {}y^{\prime \prime }+2 p y^{\prime }+\left (p^{2}+q^{2}\right ) y = {\mathrm e}^{k x} \]

19180

\[ {}y^{\prime \prime }+9 y = \sin \left (2 x \right )+\cos \left (2 x \right ) \]

19181

\[ {}y^{\prime \prime }+a^{2} y = \cos \left (a x \right )+\cos \left (b x \right ) \]

19182

\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{x}+\sin \left (2 x \right ) \]

19184

\[ {}y^{\prime \prime }-4 y = 2 \sin \left (\frac {x}{2}\right ) \]

19185

\[ {}y^{\prime \prime }+y = \sin \left (3 x \right )-\cos \left (\frac {x}{2}\right )^{2} \]

19191

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = \sin \left (x \right ) {\mathrm e}^{2 x} \]

19192

\[ {}y^{\prime \prime }-2 y^{\prime }+4 y = {\mathrm e}^{x} \cos \left (x \right ) \]

19193

\[ {}y^{\prime \prime }-y = \cosh \left (x \right ) \cos \left (x \right ) \]

19196

\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = \left (x -1\right ) {\mathrm e}^{2 x} \]

19197

\[ {}y^{\prime \prime }+2 y^{\prime }+y = x \cos \left (x \right ) \]

19200

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x} \sin \left (x \right ) \]

19201

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 8 x^{2} {\mathrm e}^{2 x} \sin \left (2 x \right ) \]

19202

\[ {}y^{\prime \prime }+y = {\mathrm e}^{-x}+\cos \left (x \right )+x^{3}+{\mathrm e}^{x} \sin \left (x \right ) \]

19206

\[ {}y^{\prime \prime }+y = 3 \cos \left (x \right )^{2}+2 \sin \left (x \right )^{3} \]

19209

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y+37 \sin \left (3 x \right ) = 0 \]

19315

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

19316

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 2 \ln \left (x \right ) \]

19323

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+5 y = 0 \]

19325

\[ {}x^{2} y^{\prime \prime }+y = 3 x^{2} \]

19326

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+5 y = x^{5} \]

19327

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = x^{4} \]

19328

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x^{4} \]

19329

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y = x^{4} \]

19330

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{m} \]

19331

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{m} \]

19332

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime } = \ln \left (x \right ) \]

19333

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = {\mathrm e}^{x} \]

19334

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }-3 y = x \]

19338

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-20 y = \left (1+x \right )^{2} \]

19341

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = x \ln \left (x \right ) \]

19342

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+5 y = x^{2} \sin \left (\ln \left (x \right )\right ) \]

19345

\[ {}\left (5+2 x \right )^{2} y^{\prime \prime }-6 \left (5+2 x \right ) y^{\prime }+8 y = 0 \]

19346

\[ {}\left (1+x \right )^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime } = \left (2 x +3\right ) \left (2 x +4\right ) \]

19347

\[ {}x y^{\prime \prime }+2 x y^{\prime }+2 y = 0 \]

19348

\[ {}y^{\prime \prime }+{\mathrm e}^{x} \left (y^{\prime }+y\right ) = {\mathrm e}^{x} \]

19349

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

19352

\[ {}y^{\prime \prime }+2 \,{\mathrm e}^{x} y^{\prime }+2 y \,{\mathrm e}^{x} = x^{2} \]

19353

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+2 \left (2 x +1\right ) y^{\prime }+2 y = 0 \]

19354

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }-4 y = 0 \]

19355

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = 2 x \]

19356

\[ {}\left (2 x^{2}+3 x \right ) y^{\prime \prime }+\left (3+6 x \right ) y^{\prime }+2 y = \left (1+x \right ) {\mathrm e}^{x} \]

19358

\[ {}\left (-b \,x^{2}+a x \right ) y^{\prime \prime }+2 a y^{\prime }+2 b y = 0 \]

19359

\[ {}\sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 y \sin \left (x \right ) = 0 \]

19363

\[ {}x^{5} y^{\prime \prime }+3 x^{3} y^{\prime }+\left (3-6 x \right ) x^{2} y = x^{4}+2 x -5 \]

19366

\[ {}y^{\prime \prime } = x +\sin \left (x \right ) \]

19367

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

19368

\[ {}y^{\prime \prime } \cos \left (x \right )^{2} = 1 \]

19370

\[ {}y^{\prime \prime } = \frac {a}{x} \]

19372

\[ {}y^{\prime \prime } \sqrt {a^{2}+x^{2}} = x \]

19373

\[ {}x^{2} y^{\prime \prime } = \ln \left (x \right ) \]

19374

\[ {}y^{\prime \prime } = y \]

19376

\[ {}y^{\prime \prime }-a^{2} y = 0 \]

19380

\[ {}y^{\prime \prime } = x y^{\prime } \]

19382

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x} \]

19383

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x} = 0 \]

19385

\[ {}y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x \left (a^{2}-x^{2}\right )} = \frac {x^{2}}{a \left (a^{2}-x^{2}\right )} \]

19386

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+a x = 0 \]

19387

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+x y^{\prime } = a x \]

19390

\[ {}y^{\prime }-x y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2}}{a} = 0 \]

19391

\[ {}x y^{\prime \prime }+y^{\prime } = x \]

19392

\[ {}\left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2}}{a} = 0 \]

19400

\[ {}a y^{\prime \prime } = y^{\prime } \]

19422

\[ {}y^{\prime \prime }+a^{2} y = 0 \]

19427

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

19430

\[ {}{\mathrm e}^{x} \left (x y^{\prime \prime }-y^{\prime }\right ) = x^{3} \]

19431

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime } = 2 \]

19435

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+x y = x \]

19436

\[ {}x y^{\prime \prime }-\left (x +3\right ) y^{\prime }+3 y = 0 \]

19437

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime } = y+{\mathrm e}^{x} \]

19438

\[ {}\left (1+x \right ) y^{\prime \prime }-2 \left (x +3\right ) y^{\prime }+\left (x +5\right ) y = {\mathrm e}^{x} \]

19439

\[ {}\left (3-x \right ) y^{\prime \prime }-\left (9-4 x \right ) y^{\prime }+\left (6-3 x \right ) y = 0 \]

19440

\[ {}y^{\prime \prime }+x y^{\prime }-y = X \]

19443

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+2 x \right ) y^{\prime }+\left (x +2\right ) y = {\mathrm e}^{x} x^{3} \]

19444

\[ {}y^{\prime \prime }-a x y^{\prime }+a^{2} \left (x -1\right ) y = 0 \]

19445

\[ {}\left (2 x^{3}-a \right ) y^{\prime \prime }-6 x^{2} y^{\prime }+6 x y = 0 \]

19446

\[ {}y^{\prime \prime }+4 x y^{\prime }+4 x^{2} y = 0 \]

19447

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+n^{2} y = 0 \]

19448

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x} = n^{2} y \]

19449

\[ {}y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y = 0 \]

19450

\[ {}y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y = x \]

19451

\[ {}4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{3}+6 x^{2}+4\right ) y = 0 \]

19452

\[ {}x^{2} y^{\prime \prime }+\left (-4 x^{2}+x \right ) y^{\prime }+\left (4 x^{2}-2 x +1\right ) y = 0 \]

19453

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = \sec \left (x \right ) {\mathrm e}^{x} \]

19454

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }-\left (a^{2}+1\right ) y = 0 \]

19455

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y = 0 \]

19456

\[ {}y^{\prime \prime }+2 n \cot \left (n x \right ) y^{\prime }+\left (m^{2}-n^{2}\right ) y = 0 \]

19457

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {y \left (-8+\sqrt {x}+x \right )}{4 x^{2}} = 0 \]